1,318 research outputs found

    ``Linearized'' Dynamical Mean-Field Theory for the Mott-Hubbard transition

    Full text link
    The Mott-Hubbard metal-insulator transition is studied within a simplified version of the Dynamical Mean-Field Theory (DMFT) in which the coupling between the impurity level and the conduction band is approximated by a single pole at the Fermi energy. In this approach, the DMFT equations are linearized, and the value for the critical Coulomb repulsion U_{\rm c} can be calculated analytically. For the symmetric single-band Hubbard model at zero temperature, the critical value is found to be given by 6 times the square root of the second moment of the free (U=0) density of states. This result is in good agreement with the numerical value obtained from the Projective Selfconsistent Method and recent Numerical Renormalization Group calculations for the Bethe and the hypercubic lattice in infinite dimensions. The generalization to more complicated lattices is discussed. The ``linearized DMFT'' yields plausible results for the complete geometry dependence of the critical interaction.Comment: 8 page

    Numerical Renormalization Group for Impurity Quantum Phase Transitions: Structure of Critical Fixed Points

    Full text link
    The numerical renormalization group method is used to investigate zero temperature phase transitions in quantum impurity systems, in particular in the particle-hole symmetric soft-gap Anderson model. The model displays two stable phases whose fixed points can be built up of non-interacting single-particle states. In contrast, the quantum phase transitions turn out to be described by interacting fixed points, and their excitations cannot be described in terms of free particles. We show that the structure of the many-body spectrum of these critical fixed points can be understood using renormalized perturbation theory close to certain values of the bath exponents which play the role of critical dimensions. Contact is made with perturbative renormalization group calculations for the soft-gap Anderson and Kondo models. A complete description of the quantum critical many-particle spectra is achieved using suitable marginal operators; technically this can be understood as epsilon-expansion for full many-body spectra.Comment: 14 pages, 12 figure

    MATERIAL BALANCE IN SEWAGE TREATMENT

    Get PDF
    The most important characteristics of sewage purification is: cell retention time (CRT), sludge loading, ratio of recirculation or rather excess sludge removal. Of course, these parameters are in close connection with each other. To examine these connections, material balance seems to be the most suitable for either the aeration tank or for the aeration tank and sedimentation basin together. These equations are suitable to examine the method of sludge load, the most basic possibility of regulation. the ratio of recirculation and also the excess sludge can be determined

    On X-ray-singularities in the f-electron spectral function of the Falicov-Kimball model

    Full text link
    The f-electron spectral function of the Falicov-Kimball model is calculated within the dynamical mean-field theory using the numerical renormalization group method as the impurity solver. Both the Bethe lattice and the hypercubic lattice are considered at half filling. For small U we obtain a single-peaked f-electron spectral function, which --for zero temperature-- exhibits an algebraic (X-ray) singularity (∣ω∣−α|\omega|^{-\alpha}) for ω→0\omega \to 0. The characteristic exponent α\alpha depends on the Coulomb (Hubbard) correlation U. This X-ray singularity cannot be observed when using alternative (Keldysh-based) many-body approaches. With increasing U, α\alpha decreases and vanishes for sufficiently large U when the f-electron spectral function develops a gap and a two-peak structure (metal-insulator transition).Comment: 8 pages, 8 figures, revte

    Spectral Densities of Response Functions for the O(3) Symmetric Anderson and Two Channel Kondo Models

    Full text link
    The O(3) symmetric Anderson model is an example of a system which has a stable low energy marginal Fermi liquid fixed point for a certain choice of parameters. It is also exactly equivalent, in the large U limit, to a localized model which describes the spin degrees of freedom of the linear dispersion two channel Kondo model. We first use an argument based on conformal field theory to establish this precise equivalence with the two channel model. We then use the numerical renormalization group (NRG) approach to calculate both one-electron and two-electron response functions for a range of values of the interaction strength U. We compare the behaviours about the marginal Fermi liquid and Fermi liquid fixed points and interpret the results in terms of a renormalized Majorana fermion picture of the elementary excitations. In the marginal Fermi liquid case the spectral densities of all the Majorana fermion modes display a |omega| dependence on the lowest energy scale, and in addition the zero Majorana mode has a delta function contribution. The weight of this delta function is studied as a function of the interaction U and is found to decrease exponentially with U for large U. Using the equivalence with the two channel Kondo model in the large U limit, we deduce the dynamical spin susceptibility of the two channel Kondo model over the full frequency range. We use renormalized perturbation theory to interpret the results and to calculate the coefficient of the ln omega divergence found in the low frequency behaviour of the T=0 dynamic susceptibility.Comment: 26 pages, 18 figures, to be published in Eur. Phys. J.

    Testing for redshift evolution of Type Ia supernovae using the strongly lensed PS1-10afx at z=1.4z=1.4

    Full text link
    The light from distant supernovae (SNe) can be magnified through gravitational lensing when a foreground galaxy is located along the line of sight. This line-up allows for detailed studies of SNe at high redshift that otherwise would not be possible. Spectroscopic observations of lensed high-redshift Type Ia supernovae (SNe Ia) are of particular interest since they can be used to test for evolution of their intrinsic properties. The use of SNe Ia for probing the cosmic expansion history has proven to be an extremely powerful method for measuring cosmological parameters. However, if systematic redshift-dependent properties are found, their usefulness for future surveys could be challenged. We investigate whether the spectroscopic properties of the strongly lensed and very distant SN Ia PS1-10afx at z=1.4z=1.4 deviates from the well-studied populations of normal SNe Ia at nearby or intermediate distance. We created median spectra from nearby and intermediate-redshift spectroscopically normal SNe Ia from the literature at -5 and +1 days from light-curve maximum. We then compared these median spectra to those of PS1-10afx. We do not find signs of spectral evolution in PS1-10afx. The observed deviation between PS1-10afx and the median templates are within what is found for SNe at low- and intermediate-redshift. There is a noticeable broad feature centred at λ∼3500\rm \lambda\sim 3500~\AA{}, which is present only to a lesser extent in individual low and intermediate redshift SN Ia spectra. From a comparison with a recently developed explosion model, we find this feature to be dominated by iron peak elements, in particular, singly ionized cobalt and chromium.Comment: accepted for publication in section 4. Extragalactic astronomy of Astronomy and Astrophysic

    Numerical Renormalization Group Calculations for the Self-energy of the impurity Anderson model

    Full text link
    We present a new method to calculate directly the one-particle self-energy of an impurity Anderson model with Wilson's numerical Renormalization Group method by writing this quantity as the ratio of two correlation functions. This way of calculating Sigma(z) turns out to be considerably more reliable and accurate than via the impurity Green's function alone. We show results for the self-energy for the case of a constant coupling between impurity and conduction band (ImDelta = const) and the effective Delta(z) arising in the Dynamical Mean Field Theory of the Hubbard model. Implications to the problem of the metal-insulator transition in the Hubbard model are also discussed.Comment: 18 pages, 9 figures, submitted to J. Phys.: Condens. Matte

    Spectral scaling and quantum critical behaviour in the pseudogap Anderson model

    Full text link
    The pseudogap Anderson impurity model provides a classic example of an essentially local quantum phase transition. Here we study its single-particle dynamics in the vicinity of the symmetric quantum critical point (QCP) separating generalized Fermi liquid and local moment phases, via the local moment approach. Both phases are shown to be characterized by a low-energy scale that vanishes at the QCP; and the universal scaling spectra, on all energy scales, are obtained analytically. The spectrum precisely at the QCP is also obtained; its form showing clearly the non-Fermi liquid, interacting nature of the fixed point.Comment: 7 pages, 2 figure
    • …
    corecore