424 research outputs found
Theory of continuum percolation I. General formalism
The theoretical basis of continuum percolation has changed greatly since its
beginning as little more than an analogy with lattice systems. Nevertheless,
there is yet no comprehensive theory of this field. A basis for such a theory
is provided here with the introduction of the Potts fluid, a system of
interacting -state spins which are free to move in the continuum. In the limit, the Potts magnetization, susceptibility and correlation functions
are directly related to the percolation probability, the mean cluster size and
the pair-connectedness, respectively. Through the Hamiltonian formulation of
the Potts fluid, the standard methods of statistical mechanics can therefore be
used in the continuum percolation problem.Comment: 26 pages, Late
Exact solution of a one-dimensional continuum percolation model
I consider a one dimensional system of particles which interact through a
hard core of diameter \si and can connect to each other if they are closer
than a distance . The mean cluster size increases as a function of the
density until it diverges at some critical density, the percolation
threshold. This system can be mapped onto an off-lattice generalization of the
Potts model which I have called the Potts fluid, and in this way, the mean
cluster size, pair connectedness and percolation probability can be calculated
exactly. The mean cluster size is S = 2 \exp[ \rho (d -\si)/(1 - \rho \si)] -
1 and diverges only at the close packing density \rho_{cp} = 1 / \si . This
is confirmed by the behavior of the percolation probability. These results
should help in judging the effectiveness of approximations or simulation
methods before they are applied to higher dimensions.Comment: 21 pages, Late
Recommended from our members
The Chandrayaan-2 Large Area Soft X-ray Spectrometer (CLASS)
The CLASS experiment on Chandrayaan-2, the second Indian lunar mission, aims tomap the abundance of the major rock forming elements on the lunar surface using the technique of X-ray fluorescence during solar flare events. CLASS is a continuation of the successful C1XS [1] XRF experiment on Chandrayaan-1. CLASS is designed to provide lunar mapping of elemental abundances with a nominal spatial resolution of 25 km (FWHM) from a 200 km polar, circular orbit of Chandrayaan-2
Structural Polymorphism of the Cytoskeleton: A Model of Linker-Assisted Filament Aggregation
The phase behavior of charged rods in the presence of inter-rod linkers is
studied theoretically as a model for the equilibrium behavior underlying the
organization of actin filaments by linker proteins in the cytoskeleton. The
presence of linkers in the solution modifies the effective inter-rod
interaction and can lead to inter-filament attraction. Depending on the
system's composition and physical properties such as linker binding energies,
filaments will either orient perpendicular or parallel to each other, leading
to network-like or bundled structures. We show that such a system can have one
of three generic phase diagrams, one dominated by bundles, another by networks,
and the third containing both bundle and network-like phases. The first two
diagrams can be found over a wide range of interaction energies, while the
third occurs only for a narrow range. These results provide theoretical
understanding of the classification of linker proteins as bundling proteins or
crosslinking proteins. In addition, they suggest possible mechanisms by which
the cell may control cytoskeletal morphology.Comment: 17 pages, 3 figure
Microscopic Model of Charge Carrier Transfer in Complex Media
We present a microscopic model of a charge carrier transfer under an action
of a constant electric field in a complex medium. Generalizing previous
theoretical approaches, we model the dynamical environment hindering the
carrier motion by dynamic percolation, i.e., as a medium comprising particles
which move randomly on a simple cubic lattice, constrained by hard-core
exclusion, and may spontaneously annihilate and re-appear at some prescribed
rates. We determine analytically the density profiles of the "environment"
particles, as seen from the stationary moving charge carrier, and calculate its
terminal velocity as the function of the applied field and other system
parameters. We realize that for sufficiently small external fields the force
exerted on the carrier by the "environment" particles shows a viscous-like
behavior and define an analog of the Stokes formula for such dynamic
percolative environments. The corresponding friction coefficient is also
derived.Comment: appearing in Chem. Phys. Special Issue on Molecular Charge Transfer
in Condensed Media - from Physics and Chemistry to Biology and
Nano-Engineering, edited by A.Kornyshev (Imperial College London), M.Newton
(Brookhaven Natl Lab) and J.Ulstrup (Technical University of Denmark
The Neuroscience Information Framework: A Data and Knowledge Environment for Neuroscience
With support from the Institutes and Centers forming the NIH Blueprint for Neuroscience Research, we have designed and implemented a new initiative for integrating access to and use of Web-based neuroscience resources: the Neuroscience Information Framework. The Framework arises from the expressed need of the neuroscience community for neuroinformatic tools and resources to aid scientific inquiry, builds upon prior development of neuroinformatics by the Human Brain Project and others, and directly derives from the Society for Neuroscience’s Neuroscience Database Gateway. Partnered with the Society, its Neuroinformatics Committee, and volunteer consultant-collaborators, our multi-site consortium has developed: (1) a comprehensive, dynamic, inventory of Web-accessible neuroscience resources, (2) an extended and integrated terminology describing resources and contents, and (3) a framework accepting and aiding concept-based queries. Evolving instantiations of the Framework may be viewed at http://nif.nih.gov, http://neurogateway.org, and other sites as they come on line
Dependence of binaural gain for infrasound on interaural phase difference
Increasing complaints about infrasound have generated interest in understanding its perception, including binaural effects. This study investigated the level difference between monaural and binaural presentation required for detection and equal loudness (binaural gain) for pure tones with frequencies of 8, 32, and 400 Hz and an 8 Hz sinusoidally amplitude-modulated tone with diotic 400 Hz carrier. Monaural stimuli were compared to binaural stimuli with interaural phase differences (IPDs) of 0°, 90°, and 180° in two experiments: absolute threshold measurements and loudness matching at 40 phons. The latter was repeated with transposed tones (400 Hz carrier multiplied by a half-wave-rectified 8 Hz sinusoid). When expressed as differences in sound pressure level, similar binaural gain was found across all stimulus types under the diotic condition. Confirming previous studies, the gain was larger at supra-threshold levels (40 phons) than at threshold. However, when the loudness-matching results were expressed as binaural gain with respect to the loudness level, they became 17.5, 11.2, and 5.8 phons for the 8, 32, and 400 Hz stimuli, respectively. Results for the 8 Hz pure tone and the transposed stimulus were IPD dependent
Generalized model for dynamic percolation
We study the dynamics of a carrier, which performs a biased motion under the
influence of an external field E, in an environment which is modeled by dynamic
percolation and created by hard-core particles. The particles move randomly on
a simple cubic lattice, constrained by hard-core exclusion, and they
spontaneously annihilate and re-appear at some prescribed rates. Using
decoupling of the third-order correlation functions into the product of the
pairwise carrier-particle correlations we determine the density profiles of the
"environment" particles, as seen from the stationary moving carrier, and
calculate its terminal velocity, V_c, as the function of the applied field and
other system parameters. We find that for sufficiently small driving forces the
force exerted on the carrier by the "environment" particles shows a
viscous-like behavior. An analog Stokes formula for such dynamic percolative
environments and the corresponding friction coefficient are derived. We show
that the density profile of the environment particles is strongly
inhomogeneous: In front of the stationary moving carrier the density is higher
than the average density, , and approaches the average value as an
exponential function of the distance from the carrier. Past the carrier the
local density is lower than and the relaxation towards may
proceed differently depending on whether the particles number is or is not
explicitly conserved.Comment: Latex, 32 pages, 4 ps-figures, submitted to PR
Transitions in the Horizontal Transport of Vertically Vibrated Granular Layers
Motivated by recent advances in the investigation of fluctuation-driven
ratchets and flows in excited granular media, we have carried out experimental
and simulational studies to explore the horizontal transport of granular
particles in a vertically vibrated system whose base has a sawtooth-shaped
profile. The resulting material flow exhibits novel collective behavior, both
as a function of the number of layers of particles and the driving frequency;
in particular, under certain conditions, increasing the layer thickness leads
to a reversal of the current, while the onset of transport as a function of
frequency occurs gradually in a manner reminiscent of a phase transition. Our
experimental findings are interpreted here with the help of extensive, event
driven Molecular Dynamics simulations. In addition to reproducing the
experimental results, the simulations revealed that the current may be reversed
as a function of the driving frequency as well. We also give details about the
simulations so that similar numerical studies can be carried out in a more
straightforward manner in the future.Comment: 12 pages, 18 figure
- …
