303 research outputs found

    The Akt inhibitor KP372-1 suppresses Akt activity and cell proliferation and induces apoptosis in thyroid cancer cells

    Get PDF
    The phosphatidylinositol 3′ kinase (PI3K)/phosphatase and tensin homologue deleted on chromosome ten/Akt pathway, which is a critical regulator of cell proliferation and survival, is mutated or activated in a wide variety of cancers. Akt appears to be a key central node in this pathway and thus is an attractive target for targeted molecular therapy. We demonstrated that Akt is highly phosphorylated in thyroid cancer cell lines and human thyroid cancer specimens, and hypothesised that KP372-1, an Akt inhibitor, would block signalling through the PI3K pathway and inhibit cell proliferation while inducing apoptosis of thyroid cancer cells. KP372-1 blocked signalling downstream of Akt in thyroid tumour cells, leading to inhibition of cell proliferation and increased apoptosis. As thyroid cancer consistently expresses phosphorylated Akt and KP372-1 effectively blocks Akt signalling, further preclinical evaluation of this compound for treatment of thyroid cancer is warranted

    Next-generation sequencing of common osteogenesis imperfecta-related genes in clinical practice

    Get PDF
    Next generation sequencing (NGS) is a rapidly developing area in genetics. Utilizing this technology in the management of disorders with complex genetic background and not recurrent mutation hot spots can be extremely useful. In this study, we applied NGS, namely semiconductor sequencing to determine the most significant osteogenesis imperfecta-related genetic variants in the clinical practice. We selected genes coding collagen type I alpha-1 and-2 (COL1A1, COL1A2) which are responsible for more than 90% of all cases. CRTAP and LEPRE1/P3H1 genes involved in the background of the recessive forms with relatively high frequency (type VII and VIII) represent less than 10% of the disease. In our six patients (1-41 years), we identified 23 different variants. We found a total of 14 single nucleotide variants (SNV) in COL1A1 and COL1A2, 5 in CRTAP and 4 in LEPRE1. Two novel and two already well-established pathogenic SNVs have been identified. Among the newly recognized mutations, one results in an amino acid change and one of them is a stop codon. We have shown that a new full-scale cost-effective NGS method can be developed and utilized to supplement diagnostic process of osteogenesis imperfecta with molecular genetic data in clinical practice

    An overview and a roadmap for artificial intelligence in hematology and oncology

    Get PDF
    BACKGROUND Artificial intelligence (AI) is influencing our society on many levels and has broad implications for the future practice of hematology and oncology. However, for many medical professionals and researchers, it often remains unclear what AI can and cannot do, and what are promising areas for a sensible application of AI in hematology and oncology. Finally, the limits and perils of using AI in oncology are not obvious to many healthcare professionals. METHODS In this article, we provide an expert-based consensus statement by the joint Working Group on "Artificial Intelligence in Hematology and Oncology" by the German Society of Hematology and Oncology (DGHO), the German Association for Medical Informatics, Biometry and Epidemiology (GMDS), and the Special Interest Group Digital Health of the German Informatics Society (GI). We provide a conceptual framework for AI in hematology and oncology. RESULTS First, we propose a technological definition, which we deliberately set in a narrow frame to mainly include the technical developments of the last ten years. Second, we present a taxonomy of clinically relevant AI systems, structured according to the type of clinical data they are used to analyze. Third, we show an overview of potential applications, including clinical, research, and educational environments with a focus on hematology and oncology. CONCLUSION Thus, this article provides a point of reference for hematologists and oncologists, and at the same time sets forth a framework for the further development and clinical deployment of AI in hematology and oncology in the future

    Targeted antitumour therapy – future perspectives

    Get PDF
    The advent of targeted therapy presents an unprecedented opportunity for advances in the treatment of cancer. A key challenge will be to translate the undoubted promise of targeted agents into tangible clinical benefits. Achieving this goal is likely to be dependent upon a number of factors. These include continued research to improve our understanding of the heterogeneity and complexity of the tumour microenvironment; refinement of clinical trial design to incorporate nontraditional end points such as the optimum biological dose and health-related quality of life; and the use of technological advancements in proteomics, genomics and biomarker development to better predict tumour types and patient subsets that may be particularly responsive to treatment, as well as enable a more accurate assessment of drug effect at the molecular level. In summary, the future success of targeted agents will require an integrated multidisciplinary approach involving all stakeholders

    Pathophysiological classification of chronic rhinosinusitis

    Get PDF
    BACKGROUND: Recent consensus statements demonstrate the breadth of the chronic rhinosinusitis (CRS) differential diagnosis. However, the classification and mechanisms of different CRS phenotypes remains problematic. METHOD: Statistical patterns of subjective and objective findings were assessed by retrospective chart review. RESULTS: CRS patients were readily divided into those with (50/99) and without (49/99) polyposis. Aspirin sensitivity was limited to 17/50 polyp subjects. They had peripheral blood eosinophilia and small airways obstruction. Allergy skin tests were positive in 71% of the remaining polyp subjects. IgE was<10 IU/ml in 8/38 polyp and 20/45 nonpolyp subjects (p = 0.015, Fisher's Exact test). CT scans of the CRS without polyp group showed sinus mucosal thickening (probable glandular hypertrophy) in 28/49, and nasal osteomeatal disease in 21/49. Immunoglobulin isotype deficiencies were more prevalent in nonpolyp than polyp subjects (p < 0.05). CONCLUSION: CRS subjects were retrospectively classified in to 4 categories using the algorithm of (1) polyp vs. nonpolyp disease, (2) aspirin sensitivity in polyposis, and (3) sinus mucosal thickening vs. nasal osteomeatal disease (CT scan extent of disease) for nonpolypoid subjects. We propose that the pathogenic mechanisms responsible for polyposis, aspirin sensitivity, humoral immunodeficiency, glandular hypertrophy, eosinophilia and atopy are primary mechanisms underlying these CRS phenotypes. The influence of microbial disease and other factors remain to be examined in this framework. We predict that future clinical studies and treatment decisions will be more logical when these interactive disease mechanisms are used to stratify CRS patients

    Oncogenic Stress Induced by Acute Hyper-Activation of Bcr-Abl Leads to Cell Death upon Induction of Excessive Aerobic Glycolysis

    Get PDF
    In response to deregulated oncogene activation, mammalian cells activate disposal programs such as programmed cell death. To investigate the mechanisms behind this oncogenic stress response we used Bcr-Abl over-expressing cells cultivated in presence of imatinib. Imatinib deprivation led to rapid induction of Bcr-Abl activity and over-stimulation of PI3K/Akt-, Ras/MAPK-, and JAK/STAT pathways. This resulted in a delayed necrosis-like cell death starting not before 48 hours after imatinib withdrawal. Cell death was preceded by enhanced glycolysis, glutaminolysis, and amino acid metabolism leading to elevated ATP and protein levels. This enhanced metabolism could be linked to induction of cell death as inhibition of glycolysis or glutaminolysis was sufficient to sustain cell viability. Therefore, these data provide first evidence that metabolic changes induced by Bcr-Abl hyper-activation are important mediators of oncogenic stress-induced cell death

    A novel insertion mutation in the cartilage-derived morphogenetic protein-1 (CDMP1) gene underlies Grebe-type chondrodysplasia in a consanguineous Pakistani family

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Grebe-type chondrodysplasia (GCD) is a rare autosomal recessive syndrome characterized by severe acromesomelic limb shortness with non-functional knob like fingers resembling toes. Mutations in the cartilage-derived morphogenetic protein 1 (<it>CDMP1</it>) gene cause Grebe-type chondrodysplasia.</p> <p>Methods</p> <p>Genotyping of six members of a Pakistani family with Grebe-type chondrodysplasia, including two affected and four unaffected individuals, was carried out by using polymorphic microsatellite markers, which are closely linked to <it>CDMP1 </it>locus on chromosome 20q11.22. To screen for a mutation in <it>CDMP1 </it>gene, all of its coding exons and splice junction sites were PCR amplified from genomic DNA of affected and unaffected individuals of the family and sequenced directly in an ABI Prism 310 automated DNA sequencer.</p> <p>Results</p> <p>Genotyping results showed linkage of the family to <it>CDMP1 </it>locus. Sequence analysis of the <it>CDMP1 </it>gene identified a novel four bases insertion mutation (1114insGAGT) in exon 2 of the gene causing frameshift and premature termination of the polypeptide.</p> <p>Conclusion</p> <p>We describe a 4 bp novel insertion mutation in <it>CDMP1 </it>gene in a Pakistani family with Grebe-type chondrodysplasia. Our findings extend the body of evidence that supports the importance of <it>CDMP1 </it>in the development of limbs.</p

    Evolution of Exon-Intron Structure and Alternative Splicing

    Get PDF
    Despite significant advances in high-throughput DNA sequencing, many important species remain understudied at the genome level. In this study we addressed a question of what can be predicted about the genome-wide characteristics of less studied species, based on the genomic data from completely sequenced species. Using NCBI databases we performed a comparative genome-wide analysis of such characteristics as alternative splicing, number of genes, gene products and exons in 36 completely sequenced model species. We created statistical regression models to fit these data and applied them to loblolly pine (Pinus taeda L.), an example of an important species whose genome has not been completely sequenced yet. Using these models, the genome-wide characteristics, such as total number of genes and exons, can be roughly predicted based on parameters estimated from available limited genomic data, e.g. exon length and exon/gene ratio

    A single-tube allele specific-polymerase chain reaction to detect T315I resistant mutation in chronic myeloid leukemia patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>BCR-ABL </it>kinase domain (KD) mutation is the major mechanism contributing to suboptimal response to tyrosine kinase inhibitors (TKI) in <it>BCR-ABL</it>-positive chronic myeloid leukemia (CML) patients. T315I mutation, as one of the most frequent KD mutations, has been shown to be strongly associated with TKI resistance and subsequent therapeutic failure. A simple and sensitive method is thus required to detect T315I mutation at the earliest stage.</p> <p>Methods</p> <p>A single-tube allele specific-polymerase chain reaction (AS-PCR) method was developed to detect T315I mutation in a mixture of normal and mutant alleles of varying dilutions. Denaturing high performance liquid chromatography (DHPLC) and direct sequencing were performed as a comparison to AS-PCR.</p> <p>Results</p> <p>T315I mutant bands were observed in the mixtures containing as low as 0.5-1% of mutant alleles by AS-PCR. The detection sensitivity of DHPLC was around 1.5-3% dilution whereas sequencing analysis was unable to detect below 6.25% dilution.</p> <p>Conclusion</p> <p>A single-tube AS-PCR is a rapid and sensitive screening method for T315I mutation. Detection of the most resistant leukemic clone in CML patients undergoing TKI therapy should be feasible with this simple and inexpensive method.</p

    Is there a cloud in the silver lining for imatinib?

    Get PDF
    Imatinib mesylate (Gleevec&#174; or Glivec&#174;), a small molecule tyrosine kinase inhibitor for the treatment of chronic myeloid leukaemia, has been said to herald the dawn of a new er-a of rationally designed, molecularly targeted oncotherapy. Lurking on the same new horizon, however, is the age-old spectre of drug resistance. This review sets the intoxicating clinical perspective against the more sobering laboratory evidence of such divergent mechanisms of imatinib resistance as gene amplification and stem cell quiescence. Polychemotherapy has already been considered to combat resistance, but a more innovative, as yet unformulated, approach may be advocated
    corecore