8 research outputs found

    The application of multiplex PCR to detect seven different DNA targets in group B streptococci

    Get PDF
    Group B Streptococcus (GBS) causes severe infections in infants and in immunocompromised adults. GBS pathogenicity varies between and within serotypes, with considerable variation in genetic content between strains. For this reason, it is important to be able to carry out immediate and comprehensive diagnostics of these infections. Seven genes important for screening of GBS infection were detected: cfb gene encoding the CAMP factor presented in every GBS; the cps operon genes such as cps1aH, cps1a/2/3IJ, and cps5O specific for capsular polysaccharide types Ia, III, and V, respectively; macrolide resistance genes ermB and mefA/E; and the gbs2018 S10 region specific for ST17 hypervirulent clone. Standardization of multiplex PCR with the use of seven primer pairs was performed on 81 bacterial strains representing different GBS isolates (n = 75) and other Gram-positive cocci (n = 10). Multiplex PCR can be used as an effective screening method to detect different sequences important for the screening of GBS infection

    Electron work function as a direct parameter for bacterial infection risk of implant surfaces

    No full text

    Effect of poly(tert-butyl methacrylate) stereoregularity on polymer film interactions with peptides, proteins, and bacteria

    No full text
    The impact of polymer stereoregularity on its interactions with peptides, proteins and bacteria strains was studied for three stereoregular forms of poly(tert-butyl methacrylate) (PtBMA): isotactic (iso), atactic (at) and syndiotactic (syn) PtBMA. Principal component analysis of the time-of-flight secondary ion mass spectrometry data recorded for thin polymer films indicated a different orientation of ester groups, which in the case of iso-PtBMA are exposed away from the surface whereas for at-PtBMA and syn-PtBMA these are located deeper within the film. This arrangement of chemical groups modified the interactions of iso-PtBMA with biomolecules when compared to at-PtBMA and syn-PtBMA. For peptides, the affected interactions were explained by the preferential hydrogen bonding and electrostatic interaction between the exposed polar ester groups of iso-PtBMA and positively charged peptides. In turn, for protein adsorption no impact on the amount of adsorbed proteins was observed. However, the polymer stereoregularity influenced the orientation of immunoglobulin G and induced conformational changes in bovine serum albumin structure. Moreover, the impact of polymer stereoregularity occurred equally for their interactions with Gram-positive bacteria (S. aureus), which absorbed preferentially onto iso-PtBMA films as compared to two other stereoregularities
    corecore