217 research outputs found

    Estimation of the Coefficient of Restitution of Rocking Systems by the Random Decrement Technique

    Get PDF

    Modal Analysis of an Offshore Platform Using Two Different ARMA Approaches

    Get PDF

    Damage Detection in an Offshore Structure

    Get PDF

    A Study on Damage Detection Using Output-Only Modal Data

    Get PDF

    Scaling Factor Estimation Using Optimized Mass Change Strategy, Part 2: Experimental Results

    Get PDF
    The mass change method is used to estimate the scaling factors, the uncertainty is reduced when, for each mode, the frequency shift is maximized and the changes in the mode shapes are minimized, which in turn, depends on the mass change strategy chosen to modify the dynamic behavior of the structure. On the other hand, the aforementioned objectives are difficult to achieve for all modes simultaneously. Thus, a study of the number, magnitude and location of the masses must be performed previously to the modal tests. In this paper, the mass change method was applied to estimate the scaling factors of a steel cantilever beam. The effect of the mass change strategy was experimentally studied by performing several modal tests in which the magnitude, the location and the number of the attached masses were change

    Identification and Modeling of a Variable Amplitude Fatigue Experiment Apparatus with Damaged Beam Specimen

    Get PDF
    The useful remaining life of engineering structures under variable amplitude (VA) fatigue loading remains a major unresolved engineering problem. The existing proposed life prediction models are usually based on empirical approximation from experimental results (Fatemi, Yang Int J Fatigue 20(1):9–34, 1998, Santecchia et al. Adv Mater Sci Eng 2016:1–26, 2016). The variable fatigue experiment apparatus in this extended abstract was designed for simulating structural fatigue with a high testing frequency, variable R-ratio as well as modifiable experimental layout (Falco et al. J Vib Acoust 136(4):041001, 2014). In previous studies, the inherent nonlinearity of the testing rig was detected, the obtained parameters allow one to properly use this testing rig within its linear region. As damage accumulates, however, the corresponding dynamic characteristics of the specimen alter accordingly. Therefore, proper modeling considering the interaction between the inherent nonlinearity and the damage induced nonlinearity for both (1) opening crack and (2) breathing crack is necessary for future fatigue life estimation under complex fatigue loading. Here, nonlinear system identification of the lately modified variable amplitude fatigue experiment apparatus is presented based on a combination of first-principles and data-driven modeling techniques. Eventually, structure-damage interaction dynamics will be described to model the underlying fatigue evolution and structural dynamics interactions
    • …
    corecore