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Abstract 

The mass change method is used to estimate the scaling factors, the uncertainty is reduced when, 

for each mode, the frequency shift is maximized and the changes in the mode shapes are 

minimized, which in turn, depends on the mass change strategy chosen to modify the dynamic 

behavior of the structure. On the other hand, the aforementioned objectives are difficult to achieve 

for all modes simultaneously. Thus, a study of the number, magnitude and location of the masses 

must be performed previously to the modal tests. In this paper, the mass change method was 

applied to estimate the scaling factors of a steel cantilever beam. The effect of the mass change 

strategy was experimentally studied by performing several modal tests in which the magnitude, the 

location and the number of the attached masses were changed. 

1 Introduction 

It is well known that the mode shapes can not be scaled in natural input modal analysis so that an 

additional method is needed to estimate the scaling factors [1]. In the past last years, some 

procedures have been proposed to determine the scaling factors based on the mass change method 

[2, 3, 4, 5]. This method consists of modifying the dynamic behaviour of the structure attaching 

masses to the points of the structure where the mode shapes are known. The scaling factors are 

estimated using the modal parameters of both the original and the modified structure. 

When the mass change method is applied, a minimum frequency shift has to be achieved [3, 5, 6] in 

order to minimize the effect of the uncertainties on the natural frequencies and the mode shape 

coordinates. On the contrary, the frequency shift should not be too high in order to minimize the 

changes in mode shapes [4, 5, 6]. 

The frequency shifts and the changes in mode shapes are not only controlled by the magnitude of 

the masses attached to the structure but also by the number and location of the masses. This means 

that the mass change strategy must be studied before modifying the dynamic behaviour of the 

structure attaching masses [6].  



In this paper, the mass change strategy 

proposed in [6] is studied and validated. 

A steel cantilever beam was used to 

perform the tests. The effect of the mass 

change strategy was experimentally 

studied by performing several modal tests 

in which the magnitude, the location and 

the number of the attached masses were 

changed. Different mass change 

configurations were used to modify the 

mass of the structure. Only the first five 

modes were considered in the 

investigation. 

2 Structure 

The structure tested was a steel cantilever 

beam as shown in Figure 1. The beam 

was 1875 mm length, with a rectangular 

100 x 40 mm hollow profile, 4 mm thick. 

 The measurements were recorded by 

means of 8 accelerometers located as  

shown in Figure 1. The lumped masses 

needed for modifying the dynamic 

behaviour of the structure were attached 

in DOF’s 1 to 7. The distance between 

points was 250 mm, excepting between 

point, 7 and 8, where the distance was 

reduced to 125 mm.  

The natural frequencies and scaling 

factors, obtained from a numerical model 

using the properties indicated in Figure 1, 

are shown in Table 1. 

3 First operational modal testing and 

analysis 

The first modal analysis was performed on the unmodified 

structure. The structure was excited moving a hand-file upward 

and downward along the beam so that the excitation was 

stationary broad banded. The responses were measured using 8 

accelerometers 4508B Brüel & Kjær, located as shown in Figure 

1, and recorded with a data acquisition card (National 

Instruments PCI4472) controlled by Labview. The tests were 

carried out at a sampling frequency of 3500 Hz.  The natural 

responses were measured during a period of approximately 3 

minutes. 

Table 1. Natural frequencies and scaling factors from 

a numerical model. 

Mode Modal 

parameter 1 2 3 4 5 

Natural 

Frequency 

(Hz) 

13,351 83,674 234,41 460,11 763,28 

Scaling 

Factor 
0,517 0,517 0,518 0,520 0,520 

Table 2. Natural frequencies 

(Hz) identified by  EFDD and 

SSI techniques. 

Natural Frequency (Hz) 
M ode 

EFDD SSI 

1 11.402 11.470 

2 72.625 72.314 

3 201.564 201.728 

4 386.715 387.146 

5 611.970 611.758 
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Figure 1. Structure 



The modal analysis was performed using a natural input modal analysis software. The first five 

natural frequencies identified with Enhanced Frequency Domain Decomposition (EFDD) and the 

Stochastic Subspace Identification (SSI) are shown in table 2. The high scatter obtained in the 

estimated scaling factors corresponding to 

the first two modes, suggested to repeat the 

modal testing. The new tests were 

concentrated on the first two modes and 

the natural responses were measured 

during a period of approximately 10 

minutes. The time series were decimated to 

a sampling frequency of 350 Hz to 

estimate the modal parameters of the two 

first modes. 

The estimated natural frequencies by 

EFDD [7] for the fist five modes are shown 

in figure 2.  

4 Mass change strategy 

In this paper, different mass change configurations (see table 4)  were used to modify the dynamic 

behaviour of the structure in order to study the effect of the number, magnitude and location of the 

attached masses proposed in [6].  

The first step in the strategy proposed in [6] 

consisted in creating a table that provides 

information of the contribution of a unit 

mass, located in the j degree of freedom, to 

the modification of the natural frequency 

corresponding to the k mode, see table 3. 

This table is obtained from the mode 

shapes of the original structure [6]. 

Table 3 shows that if we are interested in 

modifying the natural frequency 

corresponding to the first mode, using two 

masses, the best locations are the DOF’s 6 

and 7. DOF’s 3 and 7 would be the best 

location to modify the 2
nd
 mode.  

If we want to modify simultaneously the natural frequencies of the first two modes using two 

masses, we can sum the rows 1 and 2, from which is inferred that the best locations are the DOF’s 

4 and 7. Masses in DOF’s 2 and 5 were also attached in order to validate the mass change strategy 

proposed in [6]. 

The location and magnitude, in grams, of the attached masses are shown in table 4 for each 

configuration. The column to the right indicates the modes that we tried to optimize simultaneously 

in each configuration. 

The different mass change configurations can be compared creating new tables (table 5), which 

provide information about the relative frequency shift that we are going to obtain, compared with 

the frequency shift that we would obtain locating masses at positions allowing for a maximum 
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Figure 2.  Modes identified for the original structure 

by the EFDD technique. 

Table 3. Contribution of a unity mass to the 

frequency shift  (in %).(see table 1 in [6]) 

DOF  

Mode 
1 2 3 4 5 6 7 

1 0.36 2.37 8.79 20.58 39.16 64.98 100.00 

2 12.17 56.33 100.00 84.43 26.33 2.09 91.25 

3 48.12 100.00 28.48 14.50 76.72 24.39 42.45 

4 100.0 33.82 58.53 70.78 15.95 87.73 16.81 

5 100.0 13.05 74.15 54.17 28.78 95.93 2.45 



frequency shift (maximum values of the mode shapes). In [6] was demonstrated that the frequency 

shifts, ω∆  corresponding to two mass change configurations ‘a’ and ‘b’ are related by: 

{ } [ ] { }

{ } [ ] { }a
T

a

b
T

b

b

a

m

m

ψ⋅∆ψ

ψ⋅∆ψ
=

ω∆

ω∆
 

(1) 

 

where [ ]m∆  is the mass change matrix and { }ψ the unscaled mode shape.  

The relative frequency shift, ∆ω47/∆ω25, corresponding to 

masses in DOF’s 4 and 7 and in DOF’s 2 and 5, respectively, 

is shown in table 5.  This table shows that attaching masses in 

the DOF’s 4 and 7, the frequency shift for the first mode 

would be approximately 73 % of that for a maximum 

frequency shift, i.e., the one we would obtain attaching masses 

at optimal positions (6 and 7 degree of freedoms for the 1
st
 

mode). Similar comparisons can be made with other mass 

configurations. 

Table 5 also shows that masses attached in DOF’s 2 and 5 are 

the best option only for the 3
rd
 mode. Masses in DOF’s 4 and 

7 provide higher frequency shifts for the rest of the modes.  

When the mass change method is used, we must also try to minimize the changes in mode shapes. 

This implies to minimize the terms { } [ ] { }t
T

i2
i

2
t

2
i m ψ⋅∆ψ
ω−ω

ω
corresponding to each mode [6]. These 

terms provides information of the orthogonality of the modes with respect to the matrix [ ]m∆ , that 

should be minimized for each mode. 

 In the table 6 a comparison of the contribution of each mode to modify the mode shapes [6] is 

shown, for two cases with masses attached in DOF’s 4 and 7 and in all DOF’s (1,2,3,4,5,6, and 7), 

respectively.  It can be seen that locating masses in all DOF’s, the mass change is near to be 

Table 4. Different mass change configurations. Location and magnitude of the attached masses. 

DOF 
Nº 

Masses 
Total Mass 

change (%) 1 2 3 4 5 6 7 
Modes to be 

optimized 

   X (471)   X(467) 1 to 2 
2 6.30 

 X (471)   X (467)   1 to 6 

 X (310)   X (307)  X(308) 1 to 3 
3 6.18 

 X (310)    X (307) X(308) 1 to 6 

X (206) X (204)   X (205) X (206)  3 to 4 
4 5.50 

 X (204) X (206)   X (206) X(205) 1 to 4 

X (144)  X (146) X (146)  X (146) X(144) 1 to5 
5 4.85 

X (144) X (144) X (146) X (146)  X (146)  4 to5 

7 6.80 X (144) X (146) X (146) X (146) X (144) X (144) X(147) 1 to7 

Table 5. Predicted relative 

frequency shifts  [6] 

Mode 
47

Opt

ω

ω

∆

∆
 25

Opt

ω

ω

∆

∆
 47

25

ω

ω

∆

∆
 

1 72.95 25.10 290.64 

2 91.86 43.29 212.17 

3 32.18 100.11 32.14 

4 46.79 26.56 176.20 

5 29.01 21.31 136.14 



proportional to the mass of the structure. It can be concluded that the mode shape modification 

using this strategy is very low compared with the configuration with masses in DOF’s 4 and 7.  

5 Second operational 

modal analysis 

A second operational modal testing and 

analysis was performed on the modified 

structures. The dynamic behaviour of the 

structure were modified attaching lumped 

masses in several degrees on freedom, 

see table 4. The tests were carried out for 

the same sampling frequency used in the 

first modal analysis. Initially, the natural 

responses were measured during 

approximately 3 minutes. However, new 

modal tests concentrated on the first two 

modes were carried out, during 

approximately 10 minutes. 

The natural frequencies estimated by the 

EFDD and SSI identification methods are 

presented in tables 7 and 8, respectively.  

Table 9 shows the experimental frequency shifts obtained with each mass change configuration are 

presented. Moreover, a diagonal mass matrix was assembled to predict the frequency shifts. In this 

case, the total mass of the cantilever beam was known so that the predictions provide good results 

even though the diagonal matrix is only an approximation. The frequency shifts were predicted 

using  equation 2 [6]: 

 

 

 

Table 6. Contribution of the mode shape modification 

(table 3 in [6]). 

Contribution of the mode Masses 

in 

DOF’s 

Mode 
1 2 3 4 5 

1  0.004 0.001 0.0002 0.000 

2 -0.171  0.038 -0.003 -0.002 

3 -0.157 -0.296  -0.005 -0.005 

4 -0.248 0.101 0.020  0.103 

4 

& 

7 

5 -0.159 0.141 0.0545 -0.283  

1  -0.000 -0.000 -0.000 -0.000 

2 0.009  -0.002 -0.001 -0.000 

3 0.010 0.016  -0.003 -0.0027 

4 0.012 0.0248 0.0121  -0.0023 

All 

 DOF’s 

5 0.021 0.012 0.0296 0.007  

{ } [ ]{ }

{ } [ ]{ }0
T

0

0
T

0

m

m0 1

1
1

ψ⋅ψ

ψ⋅∆ψ
+

−=
ω

ω∆  (2) 

 

Table 7. Natural Frequencies of the modified structure by EFDD. 

Natural frequency (Hz) 

Modified structure. Masses attached in DOF Modes Original  

structure 4 7 2 5 2 5 7 2 6 7 1 2 5 6 2 3 6 7 1 3 4 6 7 1 2 3 4 6 All DOF’s 

1 11.40 10.85 11.23 10.871 10.862 11.198 10.979 11.098 11.354 11.025 

2 72.63 69 70.85 70.1 70.521 71.666 70.219 70.611 70.935 70.028 

3 201.56 198.06 190.33 192.22 194.67 194.64 196 197.19 198.14 194.9 

4 386.71 376.85 380.55 381.6 376.14 375.48 377.07 375.2 375.82 374.08 

5 611.97 600.52 602.52 604.63 600.33 594.65 599.43 593.8 594.29 592.54 



 

 

 

 

 

 

 

 

 

 

 

 

6 Scaling factors 

The scaling factors corresponding to the first five modes of the cantilever beam studied were 

estimated from the modal parameters of both the unmodified and the modified structures using the 

equation [2, 4]: 

( )
{ } [ ] { }

2 2

0 1

01 2

1 0 1

ω -ω

T
m

α
ω ψ ψ

=
⋅ ⋅ ∆ ⋅

, 
(3) 

 

where { }Ψ  is the unscaled mode shape, ω are the natural frequencies, α is the scaling factor, whith 

relates the unscaled { }Ψ and the mass normalised { }φ mode shapes by { } { }φ α= Ψ , [ ]m∆  is the 

mass change matrix and the subscripts '0' and  '1' indicates original and modified structure, 

respectively.   

Table 10 shows the scaling factors obtained from the modal parameters estimated by the EFFD 

method, whereas table 11 shows the scaling factors obtained from the modal identification with the 

SSI method. The results correspond to mode shapes normalised to unity.  

Table 8. Natural frequencies of the modified structure by  SSI 

Natural frequency (Hz) 

Modified structure. Masses attached in DOF Modes Original 

structure 4 7 2 5 2 5 7 2 6 7 1 2 5 6 2 3 6 7 1 3 4 6 7 1 2 3 4 6 All DOF’s 

1 11.47 10.795 11.105 10.844 11.039 11.316 11.209 10.892 10.964 11.032 

2 71.56 68.509 70.447 70.033 70.383 71.488 70.072 70.599 70.768 69.963 

3 201.73 198.02 190.55 192.25 194.75 194.64 195.96 198.14 197.19 194.87 

4 387.15 377.17 380.74 381.86 376.43 375.56 377.21 375.82 375.2 374.32 

5 611.75 601.07 602.48 604.49 600.04 594.65 599.65 594.29 593.8 592.4 

Table 9. Experimental and predicted frequency shifts (%) (EFDD technique) 

Masses attached in DOF 
Mode fq. shift 

4 7 2 5 2 5 7 2 6 7 1 2 5 6 2 3 6 7 1 3 4 6 7 1 2 3 4 6 All DOF’s 

Predicted 5.390 1.957 4.239 4.955 2.207 3.559 2.810 1.440 3.391 
1 

Exper. 4.833 1.500 4.657 4.736 1.789 3.710 2.666 0.421 3.306 

Predicted 4.840 2.371 3.233 2.803 1.232 3.094 2.565 2.269 3.277 
2 

Exper. 4.987 2.433 3.477 2.897 1.321 3.313 2.773 2.327 3.576 

Predicted 1.780 5.246 4.340 3.360 3.329 2.636 1.534 2.072 3.176 
3 

Exper. 1.737 5.570 4.635 3.422 3.435 2.762 2.170 1.698 3.308 

Predicted 2.343 1.350 1.190 2.420 2.761 2.304 2.743 2.875 3.126 
4 

Exper. 2.550 1.593 1.324 2.735 2.906 2.495 2.977 2.818 3.266 

Predicted 1.589 1.175 0.822 2.028 2.860 2.254 2.780 2.865 3.107 
5 

Exper. 1.870 1.544 1.200 1.902 2.830 2.049 2.969 2.890 3.176 



As it was indicated previously, new modal tests were carried out in order to reduce the scatter 

obtained in the estimated scaling factors corresponding to the first two modes. In [6] was shown 

that the same absolute error in the natural frequencies induces greater errors in the scaling factors at 

low frequencies. It is needed a good modal identification at these frequencies. 

In [6] was demonstrated that the uncertainty on the scaling factor increases as the frequency shift 

diminishes. This means that the scaling factors obtained at low frequency shifts will show a high 

scatter and should be discarded. 

In red color, the scaling factors estimated with frequency shifts ω∆  less than 2% of the natural 

frequency of the original structure are presented. These results were not considered to calculate the 

mean and the standard deviation. 

In grey color are shaded the modes that we tried to optimize simultaneously in each configuration. 

It can be concluded that the modal parameters of the EFDD and SSI provide similar scaling factors 

(the difference being less than 3%). As it follows from the results, the empirical standard deviation 

is in the range 1.5%-5% for the first five modes. 

It can also be observed that a mass change of 5% of the initial mass is not enough for all the 

configurations.  The number and location of the masses have also to be considered. 

The results obtained for the fifth mode shows that is difficult to achieve high frequency shifts when 

only  few masses are attached to the structure. If possible, the number of masses should be equal or 

greater than the peaks and valleys of the shape of the higher mode. 

It is not recommended trying to optimize the mass locations for many modes when only a few 

masses are going to be attached. Table 9 shows that the configuration with two masses attached in 

Table 10. Scaling Factors (EFDD) Using equation 3. 

Masses attached in DOF 

Mode 
Numerical 

model 4 7 2 5 2 5 7 2 6 7 1 2 5 6 2 3 6 7 1 3 4 6 7 1 2 3 4 6 All DOF’s 
Mean Std 

Std/ 

mean 

(%) 

1 0.5174 0.4697 0.4361 0.5213 0.4867 0.4492 0.5127 0.4842 0.2692 0.4935 0.4947 0.0191 3.87 

2 0.5175 0.4905 0.5107 0.5001 0.4899 0.5079 0.5009 0.5061 0.5005 0.5113 0.5013 0.0081 1.61 

3 0.5180 0.483 0.5086 0.4864 0.4816 0.4993 0.4951 0.5032 0.5008 0.4893 0.4944 0.0093 1.88 

4 0.5196 0.4998 0.5241 0.4901 0.4863 0.4879 0.4710 0.4783 0.4914 0.4819 0.4852 0.0093 1.91 

5 0.5228 0.5194 0.5825 0.582 0.4461 0.4600 0.4374 0.4717 0.4748 0.4729 0.4634 0.016 3.37 

Table 11. Scaling Factors (SSI) Using equation 3. 

Masses attached in DOF 
Mode 

Numerical 

model 
4 7 2 5 2 5 7 2 6 7 1 2 5 6  2 3 6 7 1 3 4 6 7 1 2 3 4 6 All DOF’s 

Mean Std 

Std/ 

mean 

(%) 

1 0.5174 0.4807 0.4592 0.4930 0.4836 0.4703 0.2793 0.4829 0.4405 0.4959 0.4872 0.0068 1.38 

2 0.5175 0.4810 0.5071 0.4914 0.4864 0.4972 0.4936 0.5011 0.4991 0.5028 0.4953 0.0088 1.78 

3 0.5180 0.4955 0.5056 0.4909 0.4840 0.5040 0.5038 0.5038 0.5084 0.4971 0.4991 0.0089 1.78 

4 0.5196 0.4967 0.5309 0.4986 0.4874 0.4946 0.4764 0.4882 0.4973 0.4858 0.4895 0.0074 1.51 

5 0.5228 0.4984 0.5743 0.5778 0.4435 0.4549 0.4403 0.4699 0.4721 0.4719 0.4618 0.014 3.03 



DOF’s 2 and 5, in which we tried to optimize the first six modes provides reasonable frequencies 

shifts only for two modes. 

7 Conclusions 

• Scaling factors have been estimated from a steel cantilever beam applying several mass 

change configurations ranging between 5% and 7% of the initial mass. 

• An optimized mass change strategy was used to determine the best location for the masses. 

In addition to the mass magnitude, the effect of the number and location of the masses were 

studied. 

• The scaling factors of the first five modes have estimated with a standard deviation of 1.5%-

5%. However, new modal test and analysis were carried out to reduce the scatter in the 

estimated scaling factors corresponding to the first two modes. 

• For the higher modes, it is difficult to achieve high frequency shifts using few masses. It is, 

therefore, recommended to consider a number of the attached masses equal or greater than 

the number of peaks and valleys of the mode shape 
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