1,578 research outputs found

    Exponential quantum enhancement for distributed addition with local nonlinearity

    Full text link
    We consider classical and entanglement-assisted versions of a distributed computation scheme that computes nonlinear Boolean functions of a set of input bits supplied by separated parties. Communication between the parties is restricted to take place through a specific apparatus which enforces the constraints that all nonlinear, nonlocal classical logic is performed by a single receiver, and that all communication occurs through a limited number of one-bit channels. In the entanglement-assisted version, the number of channels required to compute a Boolean function of fixed nonlinearity can become exponentially smaller than in the classical version. We demonstrate this exponential enhancement for the problem of distributed integer addition.Comment: To appear in Quantum Information Processin

    Improved determination of the atmospheric parameters of the pulsating sdB star Feige 48

    Full text link
    As part of a multifaceted effort to exploit better the asteroseismological potential of the pulsating sdB star Feige 48, we present an improved spectroscopic analysis of that star based on new grids of NLTE, fully line-blanketed model atmospheres. To that end, we gathered four high S/N time-averaged optical spectra of varying spectral resolution from 1.0 \AA\ to 8.7 \AA, and we made use of the results of four independent studies to fix the abundances of the most important metals in the atmosphere of Feige 48. The mean atmospheric parameters we obtained from our four spectra of Feige 48 are : Teff= 29,850 ±\pm 60 K, log gg = 5.46 ±\pm 0.01, and log N(He)/N(H) = −-2.88 ±\pm 0.02. We also modeled for the first time the He II line at 1640 \AA\ from the STIS archive spectrum of the star and we found with this line an effective temperature and a surface gravity that match well the values obtained with the optical data. With some fine tuning of the abundances of the metals visible in the optical domain we were able to achieve a very good agreement between our best available spectrum and our best-fitting synthetic one. Our derived atmospheric parameters for Feige 48 are in rather good agreement with previous estimates based on less sophisticated models. This underlines the relatively small effects of the NLTE approach combined with line blanketing in the atmosphere of this particular star, implying that the current estimates of the atmospheric parameters of Feige 48 are reliable and secure.Comment: Accepted for publication in ApJ, April 201

    Quantum Computation of a Complex System : the Kicked Harper Model

    Full text link
    The simulation of complex quantum systems on a quantum computer is studied, taking the kicked Harper model as an example. This well-studied system has a rich variety of dynamical behavior depending on parameters, displays interesting phenomena such as fractal spectra, mixed phase space, dynamical localization, anomalous diffusion, or partial delocalization, and can describe electrons in a magnetic field. Three different quantum algorithms are presented and analyzed, enabling to simulate efficiently the evolution operator of this system with different precision using different resources. Depending on the parameters chosen, the system is near-integrable, localized, or partially delocalized. In each case we identify transport or spectral quantities which can be obtained more efficiently on a quantum computer than on a classical one. In most cases, a polynomial gain compared to classical algorithms is obtained, which can be quadratic or less depending on the parameter regime. We also present the effects of static imperfections on the quantities selected, and show that depending on the regime of parameters, very different behaviors are observed. Some quantities can be obtained reliably with moderate levels of imperfection, whereas others are exponentially sensitive to imperfection strength. In particular, the imperfection threshold for delocalization becomes exponentially small in the partially delocalized regime. Our results show that interesting behavior can be observed with as little as 7-8 qubits, and can be reliably measured in presence of moderate levels of internal imperfections

    Unconditionally Secure Bit Commitment

    Get PDF
    We describe a new classical bit commitment protocol based on cryptographic constraints imposed by special relativity. The protocol is unconditionally secure against classical or quantum attacks. It evades the no-go results of Mayers, Lo and Chau by requiring from Alice a sequence of communications, including a post-revelation verification, each of which is guaranteed to be independent of its predecessor.Comment: Typos corrected. Reference details added. To appear in Phys. Rev. Let

    Multipartite Nonlocal Quantum Correlations Resistant to Imperfections

    Full text link
    We use techniques for lower bounds on communication to derive necessary conditions in terms of detector efficiency or amount of super-luminal communication for being able to reproduce with classical local hidden-variable theories the quantum correlations occurring in EPR-type experiments in the presence of noise. We apply our method to an example involving n parties sharing a GHZ-type state on which they carry out measurements and show that for local-hidden variable theories, the amount of super-luminal classical communication c and the detector efficiency eta are constrained by eta 2^(-c/n) = O(n^(-1/6)) even for constant general error probability epsilon = O(1)

    Noise Effects in Quantum Magic Squares Game

    Full text link
    In the article we analyse how noisiness of quantum channels can influence the magic squares quantum pseudo-telepathy game. We show that the probability of success can be used to determine characteristics of quantum channels. Therefore the game deserves more careful study aiming at its implementation.Comment: 5 figure

    Radiative levitation: a likely explanation for pulsations in the unique hot O subdwarf star SDSS J160043.6+074802.9

    Get PDF
    Context. SDSS J160043.6+074802.9 (J1600+0748 for short) is the only hot sdO star for which unambiguous multiperiodic luminosity variations have been reported so far. These rapid variations, with periods in the range from ~60 s to ~120 s, are best qualitatively explained in terms of pulsational instabilities, but the exact nature of the driving mechanism has remained a puzzle. Aims. Our primary goal is to examine quantitatively how pulsation modes can be excited in an object such as J1600+0748. Given the failure of uniform-metallicity models as well documented in the recent Ph.D. thesis of C. RodrĂ­guez-LĂłpez, we consider the effects of radiative levitation on iron as a means to boost the efficiency of the opacity-driving mechanism in models of J1600+0748. Methods. We combine high sensitivity time-averaged optical spectroscopy and full nonadiabatic calculations to carry out our study. In the first instance, this is used to estimate the location of J1600+0748 in the log g−Teffg-T_{\rm eff} plane. Given this essential input, we pulsate stellar models consistent with these atmospheric parameters. We construct both uniform-metallicity models and structures in which the iron abundance is specified by the condition of diffusive equilibrium between gravitational settling and radiative levitation. Results. On the basis of NTLE H/He synthetic spectra, we find that the target star has the following atmospheric parameters: log g = 5.93 ±\pm 0.11, TeffT_{\rm eff} = 71 070 ±\pm 2725 K, and log N(He)/N(H) = -0.85 ±\pm 0.08. This takes into account our deconvolution of the spectrum of J1600+0748 as it is polluted by the light of a main sequence companion. We confirm that uniform-metallicity stellar models with Z in the range from 0.02 to 0.10 cannot excite pulsation modes of the kind observed. On the other hand, we find that the inclusion of radiative levitation, as we implemented it, leads to pulsational instabilities in a period range that overlaps with, although it is narrower than, the observed range in J1600+0748. The excited modes correspond to low-order, low-degree p-modes. Conclusions. We infer that radiative levitation is a likely essential ingredient in the excitation physics at work in J1600+0748

    Why the Tsirelson bound?

    Full text link
    Wheeler's question 'why the quantum' has two aspects: why is the world quantum and not classical, and why is it quantum rather than superquantum, i.e., why the Tsirelson bound for quantum correlations? I discuss a remarkable answer to this question proposed by Pawlowski et al (2009), who provide an information-theoretic derivation of the Tsirelson bound from a principle they call 'information causality.'Comment: 17 page
    • 

    corecore