703 research outputs found

    Old open clusters: UBGVRI photometry of NGC 2506

    Get PDF
    UBGVRI photometry for the open cluster NGC 2506 is presented. From comparison of the observed colour-magnitude diagrams with simulations based on stellar evolutionary models we derive in a self consistent way reddening, distance, and age of the cluster: E(B-V)=0-0.07, (m-M)o = 12.6, age = 1.5-2.2 Gyr. The cluster shows a well definite secondary sequence, suggesting that binary systems constitute about 20 % of the cluster members visible in the colour-magnitude diagram.Comment: 11 pages, 7 figures, MNRAS latex style, accepte

    The intermediate age open cluster NGC 2660

    Full text link
    We present CCD UBVI photometry of the intermediate old open cluster NGC2660, covering from the red giants region to about seven magnitudes below the main sequence turn-off. Using the synthetic Colour - Magnitude Diagram method, we estimate in a self-consistent way values for distance modulus ((m-M)0 ~= 12.2), reddening (E(B-V) ~= 0.40), metallicity ([Fe/H] about solar), and age (age ~ 1 Gyr). A 30% population of binary stars turns out to be probably present.Comment: 12 pages, 8 (encapsulated) figures, to be published on MNRA

    Mining SDSS in search of Multiple Populations in Globular Clusters

    Full text link
    Several recent studies have reported the detection of an anomalous color spread along the red giant branch (RGB) of some globular clusters (GC) that appears only when color indices including a near ultraviolet band (such as Johnson U or Stromgren u) are considered. This anomalous spread in color indexes such as U-B or c_{y} has been shown to correlate with variations in the abundances of light elements such as C, N, O, Na, etc., which, in turn, are generally believed to be associated with subsequent star formation episodes that occurred in the earliest few 10^{8} yr of the cluster's life. Here we use publicly available u, g, r Sloan Digital Sky Survey photometry to search for anomalous u-g spreads in the RGBs of nine Galactic GCs. In seven of them (M 2, M 3, M 5, M 13, M 15, M 92 and M 53), we find evidence of a statistically significant spread in the u-g color, not seen in g-r and not accounted for by observational effects. In the case of M 5, we demonstrate that the observed u-g color spread correlates with the observed abundances of Na, the redder stars being richer in Na than the bluer ones. In all the seven clusters displaying a significant u-g color spread, we find that the stars on the red and blue sides of the RGB, in (g, u-g) color magnitude diagrams, have significantly different radial distributions. In particular, the red stars (generally identified with the second generation of cluster stars, in the current scenario) are always more centrally concentrated than blue stars (generally identified with the first generation) over the range sampled by the data (0.5r_{h} < r < 5r_{h}), in qualitative agreement with the predictions of some recent models of the formation and chemical evolution of GCs. Our results suggest that the difference in the radial distribution between first and second generation stars may be a general characteristic of GCs.Comment: 11 pages, 5 figures, typos adde

    The old anticentre open cluster Berkeley 32: membership and fundamental parameters

    Full text link
    We have obtained medium-low resolution spectroscopy and BVI CCD imaging of Berkeley 32, an old open cluster which lies in the anticentre direction. From the radial velocities of 48 stars in the cluster direction we found that 31 of them, in crucial evolutionary phases, are probable cluster members, with an average radial velocity of +106.7 (sigma = 8.5) km/s. From isochrone fitting to the colour magnitude diagrams of Berkeley 32 we have obtained an age of 6.3 Gyr, (m-M)0 = 12.48 and E(B-V) = 0.10. The best fit is obtained with Z=0.008. A consistent distance, (m-M)0 ~= 12.6 +/- 0.1, has been derived from the mean magnitude of red clump stars with confirmed membership; we may assume (m-M)0 ~= 12.55 +/- 0.1. The colour magnitude diagram of the nearby field observed to check for field stars contamination looks intriguingly similar to that of the Canis Major overdensity.Comment: MNRAS, in press. Degraded resolution for Fig.

    Photometric and spectroscopic study of the intermediate age open cluster NGC 3960

    Full text link
    We present CCD UBVI photometry and high-resolution spectroscopy of the intermediate age open cluster NGC 3960. The colour - magnitude diagrams (CMDs) derived from the photometric data and interpreted with the synthetic CMD method allow us to estimate the cluster parameters. We derive: age = 0.9 or 0.6 Gyr (depending on whether or not overshooting from convective regions is included in the adopted stellar models), distance (m-M)0 = 11.6 +/- 0.1, reddening E(B-V) = 0.29 +/- 0.02, differential reddening Delta E(B-V) = 0.05 and approximate metallicity between solar and half of solar. We obtained high resolution spectra of three clump stars, and derived an average [Fe/H] = -0.12 (rms 0.04 dex), in very good agreement with the photometric determination. We also obtained abundances of alpha-elements, Fe-peak elements, and of Ba. The reddenings toward individual stars derived from the spectroscopic temperatures and the Alonso et al. calibrations give further support to the existence of significative variations across the cluster.Comment: Accepted for publication on MNRAS; fig. 3, 4, 5, 6 at degraded resolutio

    Photometric and spectroscopic study of the intermediate-age open cluster NGC 2355

    Get PDF
    In this paper we analyse the evolutionary status and properties of the old open cluster NGC 2355, located in the Galactic anticentre direction, as a part of the long term programme BOCCE. NGC 2355 was observed with LBC@LBT using the Bessel BB, VV, and IcI_c filters. The cluster parameters have been obtained using the synthetic colour-magnitude diagram (CMD) method, as done in other papers of this series. Additional spectroscopic observations with FIES@NOT of three giant stars were used to determine the chemical properties of the cluster. Our analysis shows that NGC 2355 has metallicity slightly less than solar, with [Fe/H]=−0.06=-0.06 dex, age between 0.8 and 1 Gyr, reddening E(B−V)E(B-V) in the range 0.14 and 0.19 mag, and distance modulus (m−M)0(m-M)_0 of about 11 mag. We also investigated the abundances of O, Na, Al, α\alpha, iron-peak, and neutron capture elements, showing that NGC 2355 falls within the abundance distribution of similar clusters (same age and metallicity). The Galactocentric distance of NGC~2355 places it at the border between two regimes of metallicity distribution; this makes it an important cluster for the study of the chemical properties and evolution of the disc.Comment: 20 pages, 11 figures, Accepted on MNRA
    • 

    corecore