408 research outputs found
Multimode pulsation of the ZZ Ceti star GD 154
We present the results of a comparative period search on different
time-scales and modelling of the ZZ Ceti (DAV) star GD 154. We determined six
frequencies as normal modes and four rotational doublets around the ones having
the largest amplitude. Two normal modes at 807.62 and 861.56 microHz have never
been reported before. A rigorous test revealed remarkable intrinsic amplitude
variability of frequencies at 839.14 and 861.56 microHz over a 50 d time-scale.
In addition, the multimode pulsation changed to monoperiodic pulsation with an
843.15 microHz dominant frequency at the end of the observing run. The 2.76
microHz average rotational split detected led to a determination of a 2.1 d
rotational period for GD 154. We searched for model solutions with effective
temperatures and log g close to the spectroscopically determined ones. The
best-fitting models resulting from the grid search have M_H between 6.3 x 10^-5
and 6.3 x 10^-7 M*, which means thicker hydrogen layer than the previous
studies suggested. Our investigations show that mode trapping does not
necessarily operate in all of the observed modes and the best candidate for a
trapped mode is at 2484 microHz.Comment: 11 pages, 11 figures, accepted for publication in MNRA
Contactless Thermal Characterization Method of PCB-s Using an IR Sensor Array
In this paper the feasibility study of an IR sensor card is presented. The
methodology and the results of a quasi real-time thermal characterization tool
and method for the temperature mapping of circuits and boards based on sensing
the infrared radiation is introduced. With the proposed method the IR
radiation-distribution of boards from the close proximity of the sensor card is
monitored in quasi real-time. The proposed method is enabling in situ IR
measurement among operating cards of a system e.g. in a rack.Comment: Submitted on behalf of TIMA Editions
(http://irevues.inist.fr/tima-editions
On Gauge Invariance and Spontaneous Symmetry Breaking
We show how the widely used concept of spontaneous symmetry breaking can be
explained in causal perturbation theory by introducing a perturbative version
of quantum gauge invariance. Perturbative gauge invariance, formulated
exclusively by means of asymptotic fields, is discussed for the simple example
of Abelian U(1) gauge theory (Abelian Higgs model). Our findings are relevant
for the electroweak theory, as pointed out elsewhere.Comment: 13 pages, latex, no figure
X-Irradiation-Induced Disorganization of Cytoskeletal Filaments and Cell Contacts in HT29 Cells
Organization of cytoskeleton and cell contacts were studied by immunochemistry and electron microscopy in confluent HT29 cultured cells following exposure to 0.5 and 1.0 Gy doses of X-ray. Microtubules were resistant to irradiation, whereas, the actin and intermediate filaments disrupted rapidly following the treatment and their components appeared as clumps of actin and cytokeratin aggregates in the cytoplasm as demonstrated by immunochemistry. Loss of cell contacts and decrease in the number of desmosomes was also characteristic of irradiated cells. Electron microscopy revealed intact desmosomes in control cells and abnormal desmosomes in the irradiated samples characterized by the absence of tonofilaments. The perinuclear filament network and cortical filaments were well detectable by electron microscopy. Under the effect of irradiation, the perinuclear filaments almost disappeared and, at the same time, small bundles of filaments were formed irregularly in the cytoplasm associated with amorphous material
Absorbed radiation dosimetry of the D3-specific PET radioligand [18F]FluorTriopride estimated using rodent and nonhuman primate
[(18)F]FluorTriopride ([(18)F]FTP) is a dopamine D(3)-receptor preferring radioligand with potential for investigation of neuropsychiatric disorders including Parkinson disease, dystonia and schizophrenia. Here we estimate human radiation dosimetry for [(18)F]FTP based on the ex-vivo biodistribution in rodents and in vivo distribution in nonhuman primates. Biodistribution data were generated using male and female Sprague-Dawley rats injected with ~370 KBq of [(18)F]FTP and euthanized at 5, 30, 60, 120, and 240 min. Organs of interest were dissected, weighed and assayed for radioactivity content. PET imaging studies were performed in two male and one female macaque fascicularis administered 143-190 MBq of [(18)F]FTP and scanned whole-body in sequential sections. Organ residence times were calculated based on organ time activity curves (TAC) created from regions of Interest. OLINDA/EXM 1.1 was used to estimate human radiation dosimetry based on scaled organ residence times. In the rodent, the highest absorbed radiation dose was the upper large intestines (0.32-0.49 mGy/MBq), with an effective dose of 0.07 mSv/MBq in males and 0.1 mSv/MBq in females. For the nonhuman primate, however, the gallbladder wall was the critical organ (1.81 mGy/MBq), and the effective dose was 0.02 mSv/MBq. The species discrepancy in dosimetry estimates for [(18)F]FTP based on rat and primate data can be attributed to the slower transit of tracer through the hepatobiliary track of the primate compared to the rat, which lacks a gallbladder. Out findings demonstrate that the nonhuman primate model is more appropriate model for estimating human absorbed radiation dosimetry when hepatobiliary excretion plays a major role in radiotracer elimination
Common Space of Spin and Spacetime
Given Lorentz invariance in Minkowski spacetime, we investigate a common
space of spin and spacetime. To obtain a finite spinor representation of the
non-compact homogeneous Lorentz group including Lorentz boosts, we introduce an
indefinite inner product space (IIPS) with a normalized positive probability.
In this IIPS, the common momentum and common variable of a massive fermion turn
out to be ``doubly strict plus-operators''. Due to this nice property, it is
straightforward to show an uncertainty relation between fermion mass and proper
time. Also in IIPS, the newly-defined Lagrangian operators are self-adjoint,
and the fermion field equations are derivable from the Lagrangians. Finally,
the nonlinear QED equations and Lagrangians are presented as an example.Comment: 17 pages, a reference corrected, final version published on
Foundations of Physics Letters in June of 2005, as a personal tribute to
Einstein and Dira
Space of State Vectors in PT Symmetrical Quantum Mechanics
Space of states of PT symmetrical quantum mechanics is examined. Requirement
that eigenstates with different eigenvalues must be orthogonal leads to the
conclusion that eigenfunctions belong to the space with an indefinite metric.
The self consistent expressions for the probability amplitude and average value
of operator are suggested. Further specification of space of state vectors
yield the superselection rule, redefining notion of the superposition
principle. The expression for the probability current density, satisfying
equation of continuity and vanishing for the bound state, is proposed.Comment: Revised version, explicit expressions for average values and
probability amplitude adde
Pseudo-Hermitian Hamiltonians, indefinite inner product spaces and their symmetries
We extend the definition of generalized parity , charge-conjugation
and time-reversal operators to nondiagonalizable pseudo-Hermitian
Hamiltonians, and we use these generalized operators to describe the full set
of symmetries of a pseudo-Hermitian Hamiltonian according to a fourfold
classification. In particular we show that and are the generators of
the antiunitary symmetries; moreover, a necessary and sufficient condition is
provided for a pseudo-Hermitian Hamiltonian to admit a -reflecting
symmetry which generates the -pseudounitary and the -pseudoantiunitary
symmetries. Finally, a physical example is considered and some hints on the
-unitary evolution of a physical system are also given.Comment: 20 page
- …