461 research outputs found
Regulation of Pathologic Retinal Angiogenesis in Mice and Inhibition of VEGF-VEGFR2 Binding by Soluble Heparan Sulfate
Development of the retinal vascular network is strictly confined within the neuronal retina, allowing the intraocular media to be optically transparent. However, in retinal ischemia, pro-angiogenic factors (including vascular endothelial growth factor-A, VEGF-A) induce aberrant guidance of retinal vessels into the vitreous. Here, we show that the soluble heparan sulfate level in murine intraocular fluid is high particularly during ocular development. When the eyes of young mice with retinal ischemia were treated with heparan sulfate-degrading enzyme, the subsequent aberrant angiogenesis was greatly enhanced compared to PBS-injected contralateral eyes; however, increased angiogenesis was completely antagonized by simultaneous injection of heparin. Intraocular injection of heparan sulfate or heparin alone in these eyes resulted in reduced neovascularization. In cell cultures, the porcine ocular fluid suppressed the dose-dependent proliferation of human umbilical vein endothelial cells (HUVECs) mediated by VEGF-A. Ocular fluid and heparin also inhibited the migration and tube formation by these cells. The binding of VEGF-A and HUVECs was reduced under a high concentration of heparin or ocular fluid compared to lower concentrations of heparin. In vitro assays demonstrated that the ocular fluid or soluble heparan sulfate or heparin inhibited the binding of VEGF-A and immobilized heparin or VEGF receptor 2 but not VEGF receptor 1. The recognition that the high concentration of soluble heparan sulfate in the ocular fluid allows it to serve as an endogenous inhibitor of aberrant retinal vascular growth provides a platform for modulating heparan sulfate/heparin levels to regulate angiogenesis
Syndecan-1 expression has prognostic significance in head and neck carcinoma
The syndecans are a family of cell-surface heparan sulphate proteoglycans that regulate cell behaviour by binding extracellular matrix molecules such as growth factors. The syndecan family has four members, of which syndecan-1 is the most studied and best characterized. We have studied the prognostic significance of syndecan-1 expression in squamous cell carcinoma (SCC) of the head and neck treated with surgery and post-operative radiotherapy. Paraffin-embedded tissue samples taken from 175 patients with primary SCC, followed up from 2 to 15 years after surgery, were studied for expression of syndecan-1 by immunohistochemistry. A low number (β€50%, the median value) of syndecan-1-positive tumour cells was associated with low histological grade of differentiation (P < 0.0001), a large primary tumour size (T1β2 vs T3β4, P = 0.02), positive nodal status (N0 vs N1β3, P = 0.0006), and high clinical stage (stage I or II vs III or IV, P < 0.0001). Low syndecan-1 expression was also associated with unfavourable overall survival in a univariate analysis (P = 0.001). In a multivariate survival analysis, the clinical stage and syndecan-1 expression were the only independent prognostic factors. We conclude that syndecan-1 is a novel prognostic factor in SCC of the head and neck treated with surgery and post-operative radiotherapy. Β© 1999 Cancer Research Campaig
Peripheral chondrosarcoma progression is associated with increased type X collagen and vascularisation
Endochondral bone formation requires a cartilage template, known as the growth plate, and vascular invasion, bringing osteoblasts and osteoclasts. Endochondral chondrocytes undergo sequences of cell division, matrix secretion, cell hypertrophy, apoptosis, and matrix calcification/mineralisation. In this study, two critical steps of endochondral bone formation, the deposition of collagen X-rich matrix and blood vessel attraction/invasion, were investigated by immunohistochemistry. Fourteen multiple osteochondromas and six secondary peripheral chondrosarcomas occurring in patients with multiple osteochondromas were studied and compared to epiphyseal growth plate samples. Mutation analysis showed all studied patients (expect one) to harbour a germ-line mutations in either EXT1 or EXT2. Here, we described that homozygous mutations in EXT1/EXT2, which are causative for osteochondroma formation, are likely to affect terminal chondrocyte differentiation and vascularisation in the osteocartilaginous interface. Contrastingly, terminal chondrocyte differentiation and vascularisation seem to be unaffected in secondary peripheral chondrosarcoma. In addition, osteochondromas with high vascular density displayed a higher proliferation rate. A similar apoptotic rate was observed in osteochondromas and secondary peripheral chondrosarcomas. Recently, it has been shown that cells with functional EXT1 and EXT2 are outnumbering EXT1/EXT2 mutated cells in secondary peripheral chondrosarcomas. This might explain the increased type X collagen production and blood vessel attraction in these malignant tumours
Glycomics Analysis of Mammalian Heparan Sulfates Modified by the Human Extracellular Sulfatase HSulf2
The Sulfs are a family of endosulfatases that selectively modify the 6O-sulfation state of cell-surface heparan sulfate (HS) molecules. Sulfs serve as modulators of cell-signaling events because the changes they induce alter the cell surface co-receptor functions of HS chains. A variety of studies have been aimed at understanding how Sulfs modify HS structure, and many of these studies utilize Sulf knockout cell lines as the source for the HS used in the experiments. However, genetic manipulation of Sulfs has been shown to alter the expression levels of HS biosynthetic enzymes, and in these cases an assessment of the fine structural changes induced solely by Sulf enzymatic activity is not possible. Therefore, the present work aims to extend the understanding of substrate specificities of HSulf2 using in vitro experiments to compare HSulf2 activities on HS from different organ tissues.To further the understanding of Sulf enzymatic activity, we conducted in vitro experiments where a variety of mammalian HS substrates were modified by recombinant human Sulf2 (HSulf2). Subsequent to treatment with HSulf2, the HS samples were exhaustively depolymerized and analyzed using size-exclusion liquid chromatography-mass spectrometry (SEC-LC/MS). We found that HSulf2 activity was highly dependent on the structural features of the HS substrate. Additionally, we characterized, for the first time, the activity of HSulf2 on the non-reducing end (NRE) of HS chains. The results indicate that the action pattern of HSulf2 at the NRE is different compared to internally within the HS chain.The results of the present study indicate that the activity of Sulfs is dependent on the unique structural features of the HS populations that they edit. The activity of HSulf2 at HS NREs implicates the Sulfs as key regulators of this region of the chains, and concomitantly, the protein-binding events that occur there
Gene expression profiling of noninvasive primary urothelial tumours using microarrays
At present, the mechanism leading to bladder cancer is still poorly understood, and our knowledge about early events in tumorigenesis is limited. This study describes the changes in gene expression occurring during the neoplastic transition from normal bladder urothelium to primary Ta tumours. Using DNA microarrays, we identified novel differentially expressed genes in Ta tumours compared to normal bladder, and genes that were altered in high-grade tumours. Among the mostly changed genes between normal bladder and Ta tumours, we found genes related to the cytoskeleton (keratin 7 and syndecan 1), and transcription (high mobility group AT-hook 1). Altered genes in high-grade tumours were related to cell cycle (cyclin-dependent kinase 4) and transcription (jun d proto-oncogene). Furthermore, we showed the presence of high keratin 7 transcript expression in bladder cancer, and Western blotting analysis revealed three major molecular isoforms of keratin 7 in the tissues. These could be detected in urine sediments from bladder tumour patients
- β¦