2,486 research outputs found

    2-Segal sets and the Waldhausen construction

    No full text
    It is known by results of Dyckerhoff–Kapranov and of Gálvez-Carrillo–Kock–Tonks that the output of the Waldhausen S • -construction has a unital 2-Segal structure. Here, we prove that a certain S • -functor defines an equivalence between the category of augmented stable double categories and the category of unital 2-Segal sets. The inverse equivalence is described explicitly by a path construction. We illustrate the equivalence for the known examples of partial monoids, cobordism categories with genus constraints and graph coalgebras

    Blocking-inspired supersymmetric actions: a status report

    Full text link
    We provide a status report on the advances in blocking-inspired supersymmetric actions. This is done at the example of interacting supersymmetric quantum mechanics as well as the Wess-Zumino model. We investigate in particular the implications of a nontrivial realisation of translational symmetry on the lattice in this approach. We also discuss the locality of symmetry generators.Comment: 8 page

    IL-13R alpha 2 reverses the effects of IL-13 and IL-4 on bronchial reactivity and acetylcholine-induced Ca2+ signaling

    Get PDF
    Background: The interleukins IL-4 and IL-13 play a key role in the pathophysiology of asthma. The interleukin receptor IL-13R alpha 2 is believed to act as a decoy receptor, but until now, the functional significance of IL-13R alpha 2 remains vague. Methods: Bronchial reactivity was quantified in murine lung slices by digital video microscopy and acetylcholine (ACH)-induced Ca2+ signaling was measured in human airway smooth muscle cells (ASMC) using fluorescence microscopy. Results: IL-4 or IL-13 up to 50 ng/ml induced bronchial hyperreactivity. But after incubation with 100 ng/ml this effect was lost and bronchial responsiveness was again comparable to the control level. The effects of IL-4 and IL-13 on bronchial reactivity were paralleled by the effects on ASMC proliferation. Fifty nanograms per milliliter of IL-4 and IL-13 increased the Ca2+ response of human ASMC to ACH. At 100 ng/ml, however, the effects of the cytokines on the Ca2+ response were no longer evident. The expression of IL-13R alpha 2 increased with increasing concentrations of IL-4 or IL-13, reaching its maximum at 100 ng/ml. Blocking IL-13R alpha 2, the loss of the effect of IL-4 and IL-13 at 100 ng/ml on human ASMC proliferation and the ACH-induced Ca2+ response were no longer present. Conclusions: IL-4 and IL-13 induce bronchial hyperreactivity by changing the Ca2+ homeostasis of ASMC. These effects are counteracted by IL-13R alpha 2. The biological significance of IL-13R alpha 2 might be a protective function by regulating IL-13- and IL-4-mediated signal transduction and thereby limiting pathological alterations in Th2-mediated inflammatory diseases. Copyright (c) 2007 S. Karger AG, Basel

    Flow Equation for Supersymmetric Quantum Mechanics

    Full text link
    We study supersymmetric quantum mechanics with the functional RG formulated in terms of an exact and manifestly off-shell supersymmetric flow equation for the effective action. We solve the flow equation nonperturbatively in a systematic super-covariant derivative expansion and concentrate on systems with unbroken supersymmetry. Already at next-to-leading order, the energy of the first excited state for convex potentials is accurately determined within a 1% error for a wide range of couplings including deeply nonperturbative regimes.Comment: 24 pages, 8 figures, references added, typos correcte

    Mechanisms altering airway smooth muscle cell Ca(2+) homeostasis in two asthma models

    Get PDF
    Background: Asthma is characterized by airway remodeling, altered mucus production and airway smooth muscle cell (ASMC) contraction causing extensive airway narrowing. In particular, alterations of ASMC contractility seem to be of crucial importance. The elevation of the cytoplasmic Ca(2+) concentration is a key event leading to ASMC contraction and changes in the agonist- induced Ca(2+) increase in ASMC have been reported in asthma. Objective: The aim of this study was to investigate mechanisms underlying these changes. Methods: Murine tracheal smooth muscle cells (MTSMC) from T- bet KO mice and human bronchial smooth muscle cells (HBSMC) incubated with IL-13 and IL-4 served as asthma models. Acetylcholine- induced changes in the cytoplasmic Ca(2+) concentration were recorded using fluorescence microscopy and the expression of Ca(2+) homeostasis regulating proteins was investigated with Western blot analysis. Results: Acetylcholine- induced Ca(2+) transients were elevated in both asthma models. This correlated with an increased Ca(2+) content of the sarcoplasmic reticulum (SR). In MTSMC from T-bet KO mice, the expression of the SR Ca(2+) buffers calreticulin and calsequestrin was higher compared to wild- type mice. In HBSMC incubated with IL-13 or IL-4, the expression of ryanodine receptors, inositol-3-phosphate receptors and sarcoplasmic/ endoplasmic reticulum Ca 2+ ATPases 2 was increased compared to HBSMC without incubation with interleukins. The enlarged acetylcholine- induced Ca(2+) transients could be reversed by blocking inositol-3- phosphate receptors. Conclusions: We conclude that in the murine asthma model the SR Ca(2+) buffer capacity is increased, while in the human asthma model the expression of SR Ca(2+) channels is altered. The investigation of the Ca(2+) homeostasis of ASMC has the potential to provide new therapeutical options in asthma. Copyright (C) 2008 S. Karger AG, Basel

    Nucleosomes indicate the in vitro radiosensitivity of irradiated bronchoepithelial and lung cancer cells

    Get PDF
    Nucleosomes, which are typical cell death products, are elevated in the serum of cancer patients and are known to rapidly increase during radiotherapy. As both normal and malignant cells are damaged by irradiation, we investigated to which extent both cell types contribute to the release of nucleosomes. We cultured monolayers of normal bronchoepithelial lung cells (BEAS-2B, n = 18) and epithelial lung cancer cells (EPLC, n = 18), exposed them to various radiation doses (0, 10 and 30 Gy) and observed them for 5 days. Culture medium was changed every 24 h. Subsequently, nucleosomes were determined in the supernatant by the Cell Death Detection-ELISA(plus) ( Roche Diagnostics). Additionally, the cell number was estimated after harvesting the cells in a second preparation. After 5 days, the cell number of BEAS-2B cultures in the irradiated groups (10 Gy: median 0.03 x 10(6) cells/culture, range 0.02-0.08 x 10(6) cells/culture; 30 Gy: median 0.08 x 10(6) cells/culture, range 0.02-0.14 x 10(6) cells/culture) decreased significantly (10 Gy: p = 0.005; 30 Gy p = 0.005; Wilcoxon test) compared to the non-irradiated control group (median 4.81 x 10(6) cells/culture, range 1.50-9.54 x 10(6) cells/culture). Consistently, nucleosomes remained low in the supernatant of nonirradiated BEAS-2B. However, at 10 Gy, BEAS-2B showed a considerably increasing release of nucleosomes, with a maximum at 72 h ( before irradiation: 0.24 x 10(3) arbitrary units, AU, range 0.13-4.09 x 10(3) AU, and after 72 h: 1.94 x 10(3) AU, range 0.11-5.70 x 10(3) AU). At 30 Gy, the release was even stronger, reaching the maximum earlier (at 48 h, 11.09 x 10(3) AU, range 6.89-18.28 x 10(3) AU). In non-irradiated EPLC, nucleosomes constantly increased slightly. At 10 Gy, we observed a considerably higher release of nucleosomes in EPLC, with a maximum at 72 h (before irradiation: 2.79 x 10(3) AU, range 2.42-3.80 x 10(3) AU, and after 72 h: 7.16 x 10(3) AU, range 4.30-16.20 x 10(3) AU), which was more than 3.5 times higher than in BEAS-2B. At 30 Gy, the maximum (6.22 x 10(3) AU, range 5.13-9.71 x 10(3) AU) was observed already after 24 h. These results indicate that normal bronchoepithelial and malignant lung cancer cells contribute to the release of nucleosomes during irradiation in a dose-and time-dependent manner with cancer cells having a stronger impact at low doses. Copyright (C) 2004 S. Karger AG, Basel
    corecore