728 research outputs found

    First identification of periodic degassing rhythms in three mineral springs of the East Eifel Volcanic Field (EEVF, Germany)

    Get PDF
    We present a geochemical dataset acquired during continual sampling over 7 months (bi-weekly) and 4 weeks (every 8 h) in the Neuwied Basin, a part of the East Eifel Volcanic Field (EEVF, Germany). We used a combination of geochemical, geophysical, and statistical methods to describe and identify potential causal processes underlying the correlations of degassing patterns of CO2, He, Rn, and tectonic processes in three investigated mineral springs (Nette, Kärlich and Kobern). We provide for the first time, temporal analyses of periodic degassing patterns (1 day and 2–6 days) in springs. The temporal fluctuations in cyclic behavior of 4–5 days that we recorded had not been observed previously but may be attributed to a fundamental change in either gas source processes, subsequent gas transport to the surface, or the influence of volcano–tectonic earthquakes. Periods observed at 10 and 15 days may be related to discharge pulses of magma in the same periodic rhythm. We report the potential hint that deep low-frequency (DLF) earthquakes might actively modulate degassing. Temporal analyses of the CO2–He and CO2–Rn couples indicate that all springs are interlinked by previously unknown fault systems. The volcanic activity in the EEVF is dormant but not extinct. To understand and monitor its magmatic and degassing systems in relation to new developments in DLF-earthquakes and magmatic recharging processes and to identify seasonal variation in gas flux, we recommend continual monitoring of geogenic gases in all available springs taken at short temporal intervals

    A survey of the status of the male physical education teachers in Indiana for the year of 1947-1948

    Get PDF
    Not available.Charles M. BerberichNot ListedNot ListedMaster of ScienceDepartment Not ListedCunningham Memorial Library, Terre Haute, Indiana State University.isua-thesis-1948-berberichMastersTitle from document title page. Document formatted into pages: contains 65p.: ill. Includes appendix and bibliography

    Follicular regulatory T cells control humoral autoimmunity via NFAT2-regulated CXCR5 expression

    Get PDF
    Maturation of high-affinity B lymphocytes is precisely controlled during the germinal center reaction. This is dependent on CD4(+)CXCR5(+) follicular helper T cells (TFH) and inhibited by CD4(+)CXCR5(+)Foxp3(+) follicular regulatory T cells (TFR). Because NFAT2 was found to be highly expressed and activated in follicular T cells, we addressed its function herein. Unexpectedly, ablation of NFAT2 in T cells caused an augmented GC reaction upon immunization. Consistently, however, TFR cells were clearly reduced in the follicular T cell population due to impaired homing to B cell follicles. This was TFR-intrinsic because only in these cells NFAT2 was essential to up-regulate CXCR5. The physiological relevance for humoral (auto-)immunity was corroborated by exacerbated lupuslike disease in the presence of NFAT2-deficient TFR cells

    Degassing rhythms and fluctuations of geogenic gases in a red wood-ant nest and in soil in the Neuwied Basin (East Eifel Volcanic Field, Germany)

    Get PDF
    Geochemical tracers of crustal fluids (CO2, He, Rn) provide a useful tool for the identification of buried fault structures. We acquired geochemical data during 7-months of continual sampling to identify causal processes underlying correlations between ambient air and degassing patterns of three gases (CO2, He, Rn) in a nest of red wood ants (Formica polyctena; “RWA”) and the soil at Goloring in the Neuwied Basin, a part of the East Eifel Volcanic Field (EEVF). We explored whether temporal relations and degassing rhythms in soil and nest gas concentrations could be indicators of hidden faults through which the gases migrate to the surface from depth. In nest gas, the coupled system of CO2-He and He concentrations exceeding atmospheric standards 2-3 fold suggested that RWA nests may be biological indicators of hidden degassing faults and fractures at small scales. Equivalently periodic degassing infradian rhythms in the RWA nest, soil, and three nearby minerals springs suggested NW-SE and NE-SW tectonic linkages. Because volcanic activity in the EEVF is dormant, more detailed information on the EEVF’s tectonic, magmatic, and degassing systems and its active tectonic fault zones are needed. Such data could provide additional insights into earthquake processes that are related to magmatic processes at the lower crust

    Can a Red Wood-Ant Nest Be Associated with Fault-Related CH4 Micro-Seepage? A Case Study from Continuous Short-Term In-Situ Sampling

    Get PDF
    Simple Summary Methane (CH4) is common on Earth but its natural sources are not well-characterized. We investigated concentrations of CH4 and its stable carbon isotope (δ13C-CH4) within a red wood-ant (RWA; Formica polyctena) nest in the Neuwied Basin, a part of the East Eifel Volcanic Field (EEVF), and tested for associations between methane concentration and RWA activity patterns, earthquakes, and earth tides. Methane degassing was not synchronized with earth tides, nor was it influenced by a micro-earthquake or RWA activity. Elevated CH4 concentrations in nest gas appear to result from a combination of microbial activity and fault-related emissions. The latter could result from micro-seepage of methane derived from low-temperature gas-water-rock reactions that subsequently moves via fault networks through the RWA nest or from overlapping micro-seepage of magmatic CH4 from the Eifel plume. Given the abundance of RWA nests on the landscape, their role as sources of microbial CH4 and biological indicators for abiotically-derived CH4 should be included in estimations of methane emissions that are contributing to climatic change. Abstract We measured methane (CH4) and stable carbon isotope of methane (δ13C-CH4) concentrations in ambient air and within a red wood-ant (RWA; Formica polyctena) nest in the Neuwied Basin (Germany) using high-resolution in-situ sampling to detect microbial, thermogenic, and abiotic fault-related micro-seepage of CH4. Methane degassing from RWA nests was not synchronized with earth tides, nor was it influenced by micro-earthquake degassing or concomitantly measured RWA activity. Two δ13C-CH4 signatures were identified in nest gas: −69‰ and −37‰. The lower peak was attributed to microbial decomposition of organic matter within the RWA nest, in line with previous observations that RWA nests are hot-spots of microbial CH4. The higher peak has not been reported in previous studies. We attribute this peak to fault-related CH4 emissions moving via fault networks into the RWA nest, which could originate either from thermogenic or abiotic CH4 formation. Sources of these micro-seepages could be Devonian schists, iron-bearing “Klerf Schichten”, or overlapping micro-seepage of magmatic CH4 from the Eifel plume. Given the abundance of RWA nests on the landscape, their role as sources of microbial CH4 and biological indicators for abiotically-derived CH4 should be included in estimation of methane emissions that are contributing to climatic change

    Flavopiridol Protects Against Inflammation by Attenuating Leukocyte-Endothelial Interaction via Inhibition of Cyclin-Dependent Kinase 9

    Get PDF
    Objective: The cyclin-dependent kinase (CDK) inhibitor flavopiridol is currently being tested in clinical trials as anticancer drug. Beyond its cell death–inducing action, we hypothesized that flavopiridol affects inflammatory processes. Therefore, we elucidated the action of flavopiridol on leukocyte–endothelial cell interaction and endothelial activation in vivo and in vitro and studied the underlying molecular mechanisms. Methods and Results: Flavopiridol suppressed concanavalin A–induced hepatitis and neutrophil infiltration into liver tissue. Flavopiridol also inhibited tumor necrosis factor-α–induced leukocyte– endothelial cell interaction in the mouse cremaster muscle. Endothelial cells were found to be the major target of flavopiridol, which blocked the expression of endothelial cell adhesion molecules (intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin), as well as NF-κB-dependent transcription. Flavopiridol did not affect inhibitor of κB (IκB) kinase, the degradation and phosphorylation of IκBα, nuclear translocation of p65, or nuclear factor-κB (NF-κB) DNA-binding activity. By performing a cellular kinome array and a kinase activity panel, we found LIM domain kinase-1 (LIMK1), casein kinase 2, c-Jun N-terminal kinase (JNK), protein kinase Cθ (PKCθ), CDK4, CDK6, CDK8, and CDK9 to be influenced by flavopiridol. Using specific inhibitors, as well as RNA interference (RNAi), we revealed that only CDK9 is responsible for the action of flavopiridol. Conclusion: Our study highlights flavopiridol as a promising antiinflammatory compound and inhibition of CDK9 as a novel approach for the treatment of inflammation-associated diseases
    corecore