15 research outputs found
A survey of haptics in serious gaming
Serious gaming often requires high level of realism for training and learning purposes. Haptic technology has been proved to be useful in many applications with an additional perception modality complementary to the audio and the vision. It provides novel user experience to enhance the immersion of virtual reality with a physical control-layer. This survey focuses on the haptic technology and its applications in serious gaming. Several categories of related applications are listed and discussed in details, primarily on haptics acts as cognitive aux and main component in serious games design. We categorize haptic devices into tactile, force feedback and hybrid ones to suit different haptic interfaces, followed by description of common haptic gadgets in gaming. Haptic modeling methods, in particular, available SDKs or libraries either for commercial or academic usage, are summarized. We also analyze the existing research difficulties and technology bottleneck with haptics and foresee the future research directions
Scaptics and highlight-planes:immersive interaction techniques for finding occluded features in 3D scatterplots
International audienceThree-dimensional scatterplots suffer from well-known perception and usability problems. In particular, overplotting and occlusion, mainly due to density and noise, prevent users from properly perceiving the data. Thanks to accurate head and hand tracking, immersive Virtual Reality (VR) setups provide new ways to interact and navigate with 3D scatterplots. VR also supports additional sensory modalities such as haptic feedback. Inspired by methods commonly used in Scientific Visualisation to visually explore volumes, we propose two techniques that leverage the immersive aspects of VR: first, a density-based haptic vibration technique (Scaptics) which provides feedback through the controller; and second, an adaptation of a cutting plane for 3D scatterplots (Highlight-Plane). We evaluated both techniques in a controlled study with two tasks involving density (finding high-and low-density areas). Overall, Scaptics was the most time-efficient and accurate technique, however, in some conditions, it was outperformed by Highlight-Plane