690 research outputs found

    Internal Revenue Code Section 197: A Cure for the Controversy over the Amortization of Acquired Intangible Assets

    Get PDF

    The Resonant Exchange Qubit

    Full text link
    We introduce a solid-state qubit in which exchange interactions among confined electrons provide both the static longitudinal field and the oscillatory transverse field, allowing rapid and full qubit control via rf gate-voltage pulses. We demonstrate two-axis control at a detuning sweet-spot, where leakage due to hyperfine coupling is suppressed by the large exchange gap. A {\pi}/2-gate time of 2.5 ns and a coherence time of 19 {\mu}s, using multi-pulse echo, are also demonstrated. Model calculations that include effects of hyperfine noise are in excellent quantitative agreement with experiment

    Cytoskeleton in motion: the dynamics of keratin intermediate filaments in epithelia

    Get PDF
    Epithelia are exposed to multiple forms of stress. Keratin intermediate filaments are abundant in epithelia and form cytoskeletal networks that contribute to cell type–specific functions, such as adhesion, migration, and metabolism. A perpetual keratin filament turnover cycle supports these functions. This multistep process keeps the cytoskeleton in motion, facilitating rapid and protein biosynthesis–independent network remodeling while maintaining an intact network. The current challenge is to unravel the molecular mechanisms underlying the regulation of the keratin cycle in relation to actin and microtubule networks and in the context of epithelial tissue function

    Self-Consistent Measurement and State Tomography of an Exchange-Only Spin Qubit

    Full text link
    We report initialization, complete electrical control, and single-shot readout of an exchange-only spin qubit. Full control via the exchange interaction is fast, yielding a demonstrated 75 qubit rotations in under 2 ns. Measurement and state tomography are performed using a maximum-likelihood estimator method, allowing decoherence, leakage out of the qubit state space, and measurement fidelity to be quantified. The methods developed here are generally applicable to systems with state leakage, noisy measurements, and non-orthogonal control axes.Comment: contains Supplementary Informatio

    In-situ monitoring for CVD processes

    Get PDF
    Aiming towards process control of industrial high yield/high volume CVD reactors, the potential of optical sensors as a monitoring tool has been explored. The sensors selected are based on both Fourier transform infrared spectroscopy (FTIR) and tunable diode laser spectroscopy (NIR-DLS). The former has the advantage of wide spectral capability, and well established databases. NIR-DLS spectroscopy has potentially high sensitivity, laser spatial resolution, and the benefits of comparatively easier integration capabilities-including optical fibre compatibility. The proposed technical approach for process control is characterised by a 'chemistry based' feedback system with in-situ optical data as input information. The selected optical sensors continuously analyze the gas phase near the surface of the growing layer. The spectroscopic data has been correlated with process performance and layer properties which, in turn establish data basis for process control. The new process control approach is currently being verified on different industrialised CVD coaters. One of the selected applications deals with the deposition of SnO2 layers on glass based on the oxidation of (CH3)2SnCl2, which is used in high volume production for low-E glazing

    The good, the bad and the ugly: pandemic priority decisions and triage.

    Get PDF
    In this analysis we discuss the change in criteria for triage of patients during three different phases of a pandemic like COVID-19, seen from the critical care point of view. Availability of critical care beds has become a hot topic, and in many countries, we have seen a huge increase in the provision of temporary intensive care bed capacity. However, there is a limit where the hospitals may run out of resources to provide critical care, which is heavily dependent on trained staff, just-in-time supply chains for clinical consumables and drugs and advanced equipment. In the first (good) phase, we can still do clinical prioritisation and decision-making as usual, based on the need for intensive care and prognostication: what are the odds for a good result with regard to survival and quality of life. In the next (bad phase), the resources are mostly available, but the system is stressed by many patients arriving over a short time period and auxiliary beds in different places in the hospital being used. We may have to abandon admittance of patients with doubtful prognosis. In the last (ugly) phase, usual medical triage and priority setting may not be sufficient to decrease inflow and there may not be enough intensive care unit beds available. In this phase different criteria must be applied using a utilitarian approach for triage. We argue that this is an important transition where society, and not physicians, must provide guidance to support triage that is no longer based on medical priorities alone

    Tidal tensors in the description of gravity and electromagnetism

    Full text link
    In 2008-2009, F. Costa and C. Herdeiro proposed a new gravito-electromagnetic analogy, based on tidal tensors. We show that connections on the tangent bundle of the space-time manifold can help not only in finding a covnenient geometrization of their ideas, but also a common mathematical description of the main equations of gravity and electromagnetism.Comment: submitted to: Journal of Nonlinear Mathematical Physic
    corecore