63 research outputs found

    Directed Evolution Generates a Novel Oncolytic Virus for the Treatment of Colon Cancer

    Get PDF
    Background Viral-mediated oncolysis is a novel cancer therapeutic approach with the potential to be more effective and less toxic than current therapies due to the agents selective growth and amplification in tumor cells. To date, these agents have been highly safe in patients but have generally fallen short of their expected therapeutic value as monotherapies. Consequently, new approaches to generating highly potent oncolytic viruses are needed. To address this need, we developed a new method that we term “Directed Evolution” for creating highly potent oncolytic viruses. Methodology/Principal Findings Taking the “Directed Evolution” approach, viral diversity was increased by pooling an array of serotypes, then passaging the pools under conditions that invite recombination between serotypes. These highly diverse viral pools were then placed under stringent directed selection to generate and identify highly potent agents. ColoAd1, a complex Ad3/Ad11p chimeric virus, was the initial oncolytic virus derived by this novel methodology. ColoAd1, the first described non-Ad5-based oncolytic Ad, is 2–3 logs more potent and selective than the parent serotypes or the most clinically advanced oncolytic Ad, ONYX-015, in vitro. ColoAd1's efficacy was further tested in vivo in a colon cancer liver metastasis xenograft model following intravenous injection and its ex vivo selectivity was demonstrated on surgically-derived human colorectal tumor tissues. Lastly, we demonstrated the ability to arm ColoAd1 with an exogenous gene establishing the potential to impact the treatment of cancer on multiple levels from a single agent. Conclusions/Significance Using the “Directed Evolution” methodology, we have generated ColoAd1, a novel chimeric oncolytic virus. In vitro, this virus demonstrated a >2 log increase in both potency and selectivity when compared to ONYX-015 on colon cancer cells. These results were further supported by in vivo and ex vivo studies. Furthermore, these results have validated this methodology as a new general approach for deriving clinically-relevant, highly potent anti-cancer virotherapies

    COMMODIFICATION

    Get PDF
    Commodification is a challenge that deals not only with the payment for health care but also with the price of the human body. Commodification is somewhat a new concern in bioethics since money and markets have been traditionally ruled out of medicine in order to favor an extra-patrimonial approach to healing the ill. In the last 60 years, the amazing surge of medical technologies has further forged the relationship of health care with money, contributing to an ever-growing market of medical insurance. The need for new goods (mainly biotechnologies and insurance) in health care has clearly begun its commodification. The current commodification of health care is described as a social involution based on individual egoism and is deplored for its lack of social solidarity. Certainly, the market is an unequal factor for welfare distribution – the amount of money we hold is never the same among us nor even the same as time goes by. The commodification of medical care is backed by a neo-utilitarian/libertarian ethics that considers any issue to be seen not only as an individual situation but as a possibility to help all people live better, thanks to the market

    Commodification

    No full text

    OvAd1, a novel, potent, and selective chimeric oncolytic virus developed for ovarian cancer by 3D-directed evolution

    No full text
    Effective therapeutics for ovarian cancer continue to be urgently needed, particularly for chemotherapy-resistant cases. Here we present both a 3D-Matrigel culture-based expansion of our directed evolution method for generation of oncolytic virotherapies and two promising ovarian-cancer targeted oncolytic viruses, OvAd1 and OvAd2. OvAd1 was developed using Matrigel cell cultures, whereas OvAd2 was developed in parallel using traditional monolayer tissue culture methods. Both viruses are potent against a panel of platinum-resistant ovarian cancer cell lines and are attenuated on normal cells in vitro, resulting in therapeutic windows of ∼200-fold. We observed two benefits of the use of Matrigel-based cultures for directed evolution of these oncolytics: (1) use of Matrigel generated a bioselected pool that was more strongly attenuated on normal cells while retaining its potency against ovarian cancer cells, and (2) in an ovarian carcinomatosis model, the Matrigel-derived virus OvAd1 suppressed all tumor growth while the non-Matrigel-derived virus was 50% effective. Neither virus stimulated formation of peritoneal adhesions as seen for Ad5-based therapies. Consequently, these viruses are novel candidates for development as new effective treatments for aggressive ovarian cancer

    OvAd1, a novel, potent, and selective chimeric oncolytic virus developed for ovarian cancer by 3D-directed evolution

    No full text
    Effective therapeutics for ovarian cancer continue to be urgently needed, particularly for chemotherapy-resistant cases. Here we present both a 3D-Matrigel culture-based expansion of our directed evolution method for generation of oncolytic virotherapies and two promising ovarian-cancer targeted oncolytic viruses, OvAd1 and OvAd2. OvAd1 was developed using Matrigel cell cultures, whereas OvAd2 was developed in parallel using traditional monolayer tissue culture methods. Both viruses are potent against a panel of platinum-resistant ovarian cancer cell lines and are attenuated on normal cells in vitro, resulting in therapeutic windows of ∼200-fold. We observed two benefits of the use of Matrigel-based cultures for directed evolution of these oncolytics: (1) use of Matrigel generated a bioselected pool that was more strongly attenuated on normal cells while retaining its potency against ovarian cancer cells, and (2) in an ovarian carcinomatosis model, the Matrigel-derived virus OvAd1 suppressed all tumor growth while the non-Matrigel-derived virus was 50% effective. Neither virus stimulated formation of peritoneal adhesions as seen for Ad5-based therapies. Consequently, these viruses are novel candidates for development as new effective treatments for aggressive ovarian cancer

    Preclinical safety studies of enadenotucirev, a chimeric group B human-specific oncolytic adenovirus

    No full text
    Enadenotucirev is an oncolytic group B adenovirus identified by a process of bio-selection for the ability to selectively propagate in and rapidly kill carcinoma cells. It is resistant to inactivation by human blood components, potentially enabling intravenous dosing in patients with metastatic cancer. However, there are no known permissive animal models described for group B adenoviruses that could facilitate a conventional approach to preclinical safety studies. In this manuscript, we describe our tailored preclinical strategy designed to evaluate the key biological properties of enadenotucirev. As enadenotucirev does not replicate in animal cells, a panel of primary human cells was used to evaluate enadenotucirev replication selectivity in vitro, demonstrating that virus genome levels were >100-fold lower in normal cells relative to tumor cells. Acute intravenous tolerability in mice was used to assess virus particle-mediated toxicology and effects on innate immunity. These studies showed that particle toxicity could be ameliorated by dose fractionation, using an initial dose of virus to condition the host such that cytokine responses to subsequent doses were significantly attenuated. This, in turn, supported the initiation of a phase I intravenous clinical trial with a starting dose of 1 × 10(10) virus particles given on days 1, 3, and 5
    corecore