1,258 research outputs found
Spinodal nanodecomposition in magnetically doped semiconductors
This review presents the recent progress in computational materials design,
experimental realization, and control methods of spinodal nanodecomposition
under three- and two-dimensional crystal-growth conditions in spintronic
materials, such as magnetically doped semiconductors. The computational
description of nanodecomposition, performed by combining first-principles
calculations with kinetic Monte Carlo simulations, is discussed together with
extensive electron microscopy, synchrotron radiation, scanning probe, and ion
beam methods that have been employed to visualize binodal and spinodal
nanodecomposition (chemical phase separation) as well as nanoprecipitation
(crystallographic phase separation) in a range of semiconductor compounds with
a concentration of transition metal (TM) impurities beyond the solubility
limit. The role of growth conditions, co-doping by shallow impurities, kinetic
barriers, and surface reactions in controlling the aggregation of magnetic
cations is highlighted. According to theoretical simulations and experimental
results the TM-rich regions appear either in the form of nanodots (the {\em
dairiseki} phase) or nanocolumns (the {\em konbu} phase) buried in the host
semiconductor. Particular attention is paid to Mn-doped group III arsenides and
antimonides, TM-doped group III nitrides, Mn- and Fe-doped Ge, and Cr-doped
group II chalcogenides, in which ferromagnetic features persisting up to above
room temperature correlate with the presence of nanodecomposition and account
for the application-relevant magneto-optical and magnetotransport properties of
these compounds. Finally, it is pointed out that spinodal nanodecomposition can
be viewed as a new class of bottom-up approach to nanofabrication.Comment: 72 pages, 79 figure
Recommended from our members
Developmental Upregulation of an Alternative Form of pcp2 with Reduced GDI Activity
The pcp2/L7 gene is characterized by its very cell type-specific expression restricted to cerebellar Purkinje cells and retinal bipolar neurons. Although remarkable progress as to the biochemical properties of the encoded protein has been made, knowledge on its physiological functions remains sparse. While characterizing a pcp2-driven transgenic strain, we observed the presence of a longer, so far unknown, pcp2 transcript. Different from another recently discovered splice variant, ret-pcp2, expression of this novel transcript is observed in bipolar as well as cerebellar Purkinje cells of mid-postnatal mice. The protein encoded by our novel variant appears to be less efficient in binding to Gα subunits compared to the original L7/pcp2 protein and it is also less inhibitory with respect to GTPγ binding. Its expression in the eye appears to be independent from eye opening in postnatal mice
Strain and correlation of self-organized Ge_(1-x)Mn_x nanocolumns embedded in Ge (001)
We report on the structural properties of Ge_(1-x)Mn_x layers grown by
molecular beam epitaxy. In these layers, nanocolumns with a high Mn content are
embedded in an almost-pure Ge matrix. We have used grazing-incidence X-ray
scattering, atomic force and transmission electron microscopy to study the
structural properties of the columns. We demonstrate how the elastic
deformation of the matrix (as calculated using atomistic simulations) around
the columns, as well as the average inter-column distance can account for the
shape of the diffusion around Bragg peaks.Comment: 9 pages, 7 figure
Structure and magnetism of self-organized Ge(1-x)Mn(x) nano-columns
We report on the structural and magnetic properties of thin Ge(1-x)Mn(x)films
grown by molecular beam epitaxy (MBE) on Ge(001) substrates at temperatures
(Tg) ranging from 80deg C to 200deg C, with average Mn contents between 1 % and
11 %. Their crystalline structure, morphology and composition have been
investigated by transmission electron microscopy (TEM), electron energy loss
spectroscopy and x-ray diffraction. In the whole range of growth temperatures
and Mn concentrations, we observed the formation of manganese rich
nanostructures embedded in a nearly pure germanium matrix. Growth temperature
mostly determines the structural properties of Mn-rich nanostructures. For low
growth temperatures (below 120deg C), we evidenced a two-dimensional spinodal
decomposition resulting in the formation of vertical one-dimensional
nanostructures (nanocolumns). Moreover we show in this paper the influence of
growth parameters (Tg and Mn content) on this decomposition i.e. on nanocolumns
size and density. For temperatures higher than 180deg C, we observed the
formation of Ge3Mn5 clusters. For intermediate growth temperatures nanocolumns
and nanoclusters coexist. Combining high resolution TEM and superconducting
quantum interference device magnetometry, we could evidence at least four
different magnetic phases in Ge(1-x)Mn(x) films: (i) paramagnetic diluted Mn
atoms in the germanium matrix, (ii) superparamagnetic and ferromagnetic low-Tc
nanocolumns (120 K 400 K) and
(iv) Ge3Mn5 clusters.Comment: 10 pages 2 colonnes revTex formatte
Exchange bias in GeMn nanocolumns: the role of surface oxidation
We report on the exchange biasing of self-assembled ferromagnetic GeMn
nanocolumns by GeMn-oxide caps. The x-ray absorption spectroscopy analysis of
this surface oxide shows a multiplet fine structure that is typical of the Mn2+
valence state in MnO. A magnetization hysteresis shift |HE|~100 Oe and a
coercivity enhancement of about 70 Oe have been obtained upon cooling (300-5 K)
in a magnetic field as low as 0.25 T. This exchange bias is attributed to the
interface coupling between the ferromagnetic nanocolumns and the
antiferromagnetic MnO-like caps. The effect enhancement is achieved by
depositing a MnO layer on the GeMn nanocolumns.Comment: 7 pages, 5 figure
Electrical spin injection and detection in Germanium using three terminal geometry
In this letter, we report on successful electrical spin injection and
detection in \textit{n}-type germanium-on-insulator (GOI) using a
Co/Py/AlO spin injector and 3-terminal non-local measurements. We
observe an enhanced spin accumulation signal of the order of 1 meV consistent
with the sequential tunneling process via interface states in the vicinity of
the AlO/Ge interface. This spin signal is further observable up to
220 K. Moreover, the presence of a strong \textit{inverted} Hanle effect points
at the influence of random fields arising from interface roughness on the
injected spins.Comment: 4 pages, 3 figure
Electrical and thermal spin accumulation in germanium
In this letter, we first show electrical spin injection in the germanium
conduction band at room temperature and modulate the spin signal by applying a
gate voltage to the channel. The corresponding signal modulation agrees well
with the predictions of spin diffusion models. Then by setting a temperature
gradient between germanium and the ferromagnet, we create a thermal spin
accumulation in germanium without any tunnel charge current. We show that
temperature gradients yield larger spin accumulations than pure electrical spin
injection but, due to competing microscopic effects, the thermal spin
accumulation in germanium remains surprisingly almost unchanged under the
application of a gate voltage to the channel.Comment: 7 pages, 3 figure
- …