190 research outputs found

    An essential role for Ran GTPase in epithelial ovarian cancer cell survival

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We previously identified that Ran protein, a member of the Ras GTPase family, is highly expressed in high grade and high stage serous epithelial ovarian cancers, and that its overexpression is associated with a poor prognosis. Ran is known to contribute to both nucleocytoplasmic transport and cell cycle progression, but its role in ovarian cancer is not well defined.</p> <p>Results</p> <p>Using a lentivirus-based tetracycline-inducible shRNA approach, we show that downregulation of Ran expression in aggressive ovarian cancer cell lines affects cellular proliferation by inducing a caspase-3 associated apoptosis. Using a xenograft tumor assay, we demonstrate that depletion of Ran results in decreased tumorigenesis, and eventual tumor formation is associated with tumor cells that express Ran protein.</p> <p>Conclusion</p> <p>Our results suggest a role for Ran in ovarian cancer cell survival and tumorigenicity and suggest that this critical GTPase may be suitable as a therapeutic target.</p

    Design and optimization of electrochemical microreactors for continuous electrosynthesis

    Get PDF
    The study focuses on the design and construction, as well as the theoretical and experimental optimization of electrochemical filter press microreactors for the electrosynthesis of molecules with a high added value. The main characteristics of these devices are firstly a high-specific electrochemical area to increase conversion and selectivity, and secondly the shape and size of themicrochannels designed for a uniform residence time distribution of the fluid. A heat exchanger is integrated into the microstructured electrode to rapidly remove (or supply) the heat required in exo- or endothermic reactions. The microreactors designed are used to perform-specific electrosynthesis reactions such as thermodynamically unfavorable reactions (continuous NADH regeneration), or reactions with high enthalpy changes

    On Dimensionality of Halogen-Bonded Thiophene Solid-State Assemblies

    Get PDF
    We report on the structures of three dibromothiophene compounds (4, 5, and 12) and the analysis of the patterns of self-assembly in the solid state by C — Br⋅⋅⋅Br — C halogen bonds of a selected set of 16 di- or poly-bromine — (poly)thiophene monomers sorted according to the dimensionality of their halogen-bonded, extended frameworks thereby identifying syn- or anti-strings and layers. We conclude that in 1, 2, 9, and 10, the antiparallel orientation of successive C — Br⋅⋅⋅Br — C halogen-bonded dibromothiophene units along extended anti-strings is linked to the occurrence of solid-state polymerization

    Transcriptomic and epigenetic responses to short-term nutrient-exercise stress in humans

    Get PDF
    Abstract High fat feeding impairs skeletal muscle metabolic flexibility and induces insulin resistance, whereas exercise training exerts positive effects on substrate handling and improves insulin sensitivity. To identify the genomic mechanisms by which exercise ameliorates some of the deleterious effects of high fat feeding, we investigated the transcriptional and epigenetic response of human skeletal muscle to 9 days of a high-fat diet (HFD) alone (Sed-HFD) or in combination with resistance exercise (Ex-HFD), using genome-wide profiling of gene expression and DNA methylation. HFD markedly induced expression of immune and inflammatory genes, which was not attenuated by Ex. Conversely, Ex markedly remodelled expression of genes associated with muscle growth and structure. We detected marked DNA methylation changes following HFD alone and in combination with Ex. Among the genes that showed a significant association between DNA methylation and gene expression changes were PYGM, which was epigenetically regulated in both groups, and ANGPTL4, which was regulated only following Ex. In conclusion, while short-term Ex did not prevent a HFD-induced inflammatory response, it provoked a genomic response that may protect skeletal muscle from atrophy. These epigenetic adaptations provide mechanistic insight into the gene-specific regulation of inflammatory and metabolic processes in human skeletal muscle

    Altered Methylation Profile of Lymphocytes Is Concordant with Perturbation of Lipids Metabolism and Inflammatory Response in Obesity

    Get PDF
    Obesity is associated with immunological perturbations that contribute to insulin resistance. Epigenetic mechanisms can control immune functions and have been linked to metabolic complications, although their contribution to insulin resistance still remains unclear. In this study, we investigated the link between metabolic dysfunction and immune alterations with the epigenetic signature in leukocytes in a porcine model of obesity. Global DNA methylation of circulating leukocytes, adipose tissue leukocyte trafficking, and macrophage polarisation were established by flow cytometry. Adipose tissue inflammation and metabolic function were further characterised by quantification of metabolites and expression levels of genes associated with obesity and inflammation. Here we show that obese pigs showed bigger visceral fat pads, higher levels of circulating LDL cholesterol, and impaired glucose tolerance. These changes coincided with impaired metabolism, sustained macrophages infiltration, and increased inflammation in the adipose tissue. Those immune alterations were linked to global DNA hypermethylation in both B-cells and T-cells. Our results provide novel insight into the possible contribution of immune cell epigenetics into the immunological disturbances observed in obesity. The dramatic changes in the transcriptomic and epigenetic signature of circulating lymphocytes reinforce the concept that epigenetic processes participate in the increased immune cell activation and impaired metabolic functions in obesity

    Chronic erythropoietin treatment improves diet-induced glucose intolerance in rats

    Get PDF
    Erythropoietin (EPO) ameliorates glucose metabolism through mechanisms not fully understood. In this study, we investigated the effect of EPO on glucose metabolism and insulin signaling in skeletal muscle. A 2-week EPO treatment of rats fed with a high-fat diet (HFD) improved fasting glucose levels and glucose tolerance, without altering total body weight or retroperitoneal fat mass. Concomitantly, EPO partially rescued insulin-stimulated AKT activation, reduced markers of oxidative stress, and restored heat-shock protein 72 expression in soleus muscles from HFD-fed rats. Incubation of skeletal muscle cell cultures with EPO failed to induce AKT phosphorylation and had no effect on glucose uptake or glycogen synthesis. We found that the EPO receptor gene was expressed in myotubes, but was undetectable in soleus. Together, our results indicate that EPO treatment improves glucose tolerance but does not directly activate the phosphorylation of AKT in muscle cells. We propose that the reduced systemic inflammation or oxidative stress that we observed after treatment with EPO could contribute to the improvement of whole-body glucose metabolism.Corinne Caillaud, Mie Mechta, Heidi Ainge, Andreas N Madsen, Patricia Ruell, Emilie Mas, Catherine Bisbal, Jacques Mercier, Stephen Twigg, Trevor A Mori, David Simar and Romain Barrè

    Dietary macronutrient composition impacts gene regulation in adipose tissue

    Get PDF
    Diet is a key lifestyle component that influences metabolic health through several factors, including total energy intake and macronutrient composition. While the impact of caloric intake on gene expression and physiological phenomena in various tissues is well described, the influence of dietary macronutrient composition on these parameters is less well studied. Here, we use the Nutritional Geometry framework to investigate the role of macronutrient composition on metabolic function and gene regulation in adipose tissue. Using ten isocaloric diets that vary systematically in their proportion of energy from fat, protein, and carbohydrates, we find that gene expression and splicing are highly responsive to macronutrient composition, with distinct sets of genes regulated by different macronutrient interactions. Specifically, the expression of many genes associated with Bardet-Biedl syndrome is responsive to dietary fat content. Splicing and expression changes occur in largely separate gene sets, highlighting distinct mechanisms by which dietary composition influences the transcriptome and emphasizing the importance of considering splicing changes to more fully capture the gene regulation response to environmental changes such as diet. Our study provides insight into the gene regulation plasticity of adipose tissue in response to macronutrient composition, beyond the already well-characterized response to caloric intake

    Palmitate impairs circadian transcriptomics in muscle cells through histone modification of enhancers

    Get PDF
    Acknowledgements The authors are supported by grants from the Novo Nordisk Foundation (NNF14OC0011493 and NNF17OC0030088), EFSD/Novo Nordisk Foundation Future Leader Award (NNF21SA0072747), Swedish Diabetes Foundation (DIA2021-641 and DIA2021-645), Swedish Research Council (2015-00165 and 2018-02389), KID-funding (2-3591/2014), the Strategic Research Program in Diabetes at Karolinska Institutet (2009-1068), Marie Skłodowska-Curie Actions (European Commission, 675610 and 704978), and Novo Nordisk postdoctoral fellowship run in partnership with Karolinska Institutet. Additional support was received from the Novo Nordisk Foundation Center for Basic Metabolic Research at the University of Copenhagen (NNF18CC0034900).Peer reviewedPublisher PD
    corecore