124 research outputs found

    The 678 Hz acoustic immittance probe tone: a more definitive indicator of PET than the traditional 226 Hz method.

    Get PDF
    BACKGROUND: The accurate diagnosis of Eustachian tube (ET) dysfunction can be very difficult. Our aim is to determine whether a 678 Hz probe tone is a more accurate indicator of Patulous ET (PET) than the 226 Hz probe tone when used in compliance over time (COT) testing. METHODS: Twenty subjects (11 normal ET ears and 7 PET ears) were individually seated in an examination room and connected to a GSI TympStar Middle Ear Analyzer. The order of probe tone frequency (678 or 226 Hz) was randomized. Baseline "testing" COT recordings for each ear undergoing testing were completed. Subjects were instructed to occlude their contralateral nostril and to breathe forcefully in and out through their ipsilateral nostril until the test had run to completion. This process was repeated with the probe tone that had not been previously run. For the control group, each subject had one random ear tested. For the experimental group, only the affected ear(s) was tested. Wilcoxon rank rum tests were performed to determine statistical significance. RESULTS: The baseline COT measurements for the control group and PET group were similar, 0.86 mL (SD = 0.34) and 0.74 (SD = 0.33) respectively. Comparing the 226 Hz tone between groups revealed that PET patients had a median COT difference 0.19 mL higher than healthy ET patients, and for the 678 Hz tone, PET patients had a median COT difference of 0.57 mL higher than healthy ET patients. Both were deemed to be statistically significant (p = 0.002, p = 0.004 respectively). The was a statistically significant median COT difference between the 678 Hz and 226 Hz of 0.61 mL (p = 0.034) for the PET group, while the same comparison for the control group of 0.05 mL was not significant (p = 0.262), suggesting that the 678 Hz tone yields a larger response for PET than the 226 Hz tone, and no difference for the control group, thus making it less prone to artifact noise interference. CONCLUSION: The 678 Hz probe tone is a more reliable indicator of ET patency, and should be preferably used over the 226 Hz tone for future COT testing

    Patient-Reported Outcomes in Middle Ear and Active Transcutaneous Bone Conduction Hearing Implants

    Get PDF
    OBJECTIVE: This study used questionnaires to examine the patient-reported satisfaction with 2 hearing implant devices to determine the level of overall satisfaction with the devices, which, if any, factors predicted good or poor perceived outcomes, or whether there were any specific aspects of the devices where dissatisfaction was apparent. METHODS: A post-treatment questionnaire survey of 39 adult patients who had received a Vibrant Soundbridge (VSB) or Bonebridge (BB) hearing implant, with at least 3 months of follow-up, was conducted using the Glasgow Benefit Inventory (GBI) and Hearing Device Satisfaction Scale (HDSS). Satisfaction scores were compared to pre- and post-operative audiologic outcomes. The correlation between GBI and HDSS scores was also examined. RESULTS: A total of 28 of the 39 patients (72%) responded: 13 with a BB and 15 with a VSB at a mean of 13 months after implantation. The overall mean total GBI score was 30, with no significant differences across the groups. The responders generally reported that they were “satisfied” across most domains of the HDSS. In the study, 25 of the 28 responders were largely satisfied with their devices but 3 respondents were not. Two were known non-users, while one used the device but did not gain the benefit expected. It is instructive to note that all of these dissatisfied recipients were close to the manufacturer recommended limits for implantation of their respective devices at the time of surgery

    Mechanical oscillations of magnetic strips under the influence of external field

    Get PDF
    This is the final version of the article. Available from EDP Sciences via the DOI in this record.JEMS 2012 – Joint European Magnetic SymposiaBy application of a magnetic field on an amorphous metallic strip, the orientation of magnetization of Weiss domains can be changed. When the strip changes its length, this effect is called magnetostriction. We simulate this effect using a finite element method. In particular we calculate the change of the mechanical resonance frequency of a magnetic platelet as a function of the applied field. This gives a quantitative model of the influence of the applied magnetic field on the effective Young's Modulus of the material. © 2013 Owned by the authors, published by EDP Sciences

    Grain-size dependent demagnetizing factors in permanent magnets

    Get PDF
    This is the final version of the article. Available from the American Institute of Physics via the DOI in this record.The coercive field of permanent magnets decreases with increasing grain size. The grain size dependence of coercivity is explained by a size dependent demagnetizing factor. In Dy free Nd2_2Fe14_{14}B magnets the size dependent demagnetizing factor ranges from 0.2 for a grain size of 55 nm to 1.22 for a grain size of 8300 nm. The comparison of experimental data with micromagnetic simulations suggests that the grain size dependence of the coercive field in hard magnets is due to the non-uniform magnetostatic field in polyhedral grains.This work is based on results obtained from the future pioneering program “Development of magnetic material technology for high-efficiency motors” commissioned by the New Energy and Industrial Technology Development Organization (NEDO). We acknowledge the financial support from the Austrian Science Fund (F4112-N13)

    High energy product in Battenberg structured magnets

    Get PDF
    PublishedJournal Article© 2014 AIP Publishing LLC. Multiphase nano-structured permanent magnets show a high thermal stability of remanence and a high energy product while the amount of rare-earth elements is reduced. Non-zero temperature micromagnetic simulations show that a temperature coefficient of remanence of -0.073%/K and that an energy product greater than 400 kJ/m3 can be achieved at a temperature of 450 K in a magnet containing around 40 volume percent Fe65Co35 embedded in a hard magnetic matrix
    corecore