1 research outputs found

    Description and applications of a 3D mathematical model for horizontal anode baking furnaces

    Get PDF
    In aluminum industry, carbon anodes are consumed continuously during alumina reduction in the electrolysis cells. Anodes are made of calcined coke, butt, and recycled anode particles and pitch as the binder. Green anodes are baked in large furnaces where they attain specific properties in terms of density, mechanical strength, and electrical conductivity. Baking is an important and costly step in carbon anode production. The proper operation of the furnace provides the required anode quality. Mathematical modeling allows the prediction of the heating profile of anodes during baking. Taking into account all the relevant phenomena, a 3D transient mathematical model was developed to simulate the different stages of the baking process in the furnace. The predictions give a detailed view of the furnace operation and performance. In this article, the 3D model is described, and the results on the impact of various parameters on furnace behavior are presented
    corecore