622 research outputs found

    Spatio-temporal dynamics and plastic flow of vortices in superconductors with periodic arrays of pinning sites

    Full text link
    We present simulations of flux-gradient-driven superconducting rigid vortices interacting with square and triangular arrays of columnar pinning sites in an increasing external magnetic field. These simulations allow us to quantitatively relate spatio-temporal microscopic information of the vortex lattice with typically measured macroscopic quantities, such as the magnetization M(H)M(H). The flux lattice does not become completely commensurate with the pinning sites throughout the sample at the magnetization matching peaks, but forms a commensurate lattice in a region close to the edge of the sample. Matching fields related to unstable vortex configurations do not produce peaks in M(H)M(H). We observe a variety of evolving complex flux profiles, including flat terraces or plateaus separated by winding current-carrying strings and, near the peaks in M(H)M(H), plateaus only in certain regions, which move through the sample as the field increases

    Magnetic Pinning of Vortices in a Superconducting Film: The (anti)vortex-magnetic dipole interaction energy in the London approximation

    Full text link
    The interaction between a superconducting vortex or antivortex in a superconducting film and a magnetic dipole with in- or out-of-plane magnetization is investigated within the London approximation. The dependence of the interaction energy on the dipole-vortex distance and the film thickness is studied and analytical results are obtained in limiting cases. We show how the short range interaction with the magnetic dipole makes the co-existence of vortices and antivortices possible. Different configurations with vortices and antivortices are investigated.Comment: 12 pages, 12 figures. Submitted to Phys. Rev.

    Vortex Pinning and the Non-Hermitian Mott Transition

    Full text link
    The boson Hubbard model has been extensively studied as a model of the zero temperature superfluid/insulator transition in Helium-4 on periodic substrates. It can also serve as a model for vortex lines in superconductors with a magnetic field parallel to a periodic array of columnar pins, due to a formal analogy between the vortex lines and the statistical mechanics of quantum bosons. When the magnetic field has a component perpendicular to the pins, this analogy yields a non-Hermitian boson Hubbard model. At integer filling, we find that for small transverse fields, the insulating phase is preserved, and the transverse field is exponentially screened away from the boundaries of the superconductor. At larger transverse fields, a ``superfluid'' phase of tilted, entangled vortices appears. The universality class of the transition is found to be that of vortex lines entering the Meissner phase at H_{c1}, with the additional feature that the direction of the tilted vortices at the transition bears a non-trivial relationship to the direction of the applied magnetic field. The properties of the Mott Insulator and flux liquid phases with tilt are also discussed.Comment: 20 pages, 12 figures included in text; to appear in Physical Review

    Vortex Structure Around a Magnetic Dot in Planar Superconductors

    Full text link
    The problem of the giant vortex state around a magnetic dot which is embedded in a superconducting film is investigated. The full non-linear, self-consistent Ginzburg-Landau equations are solved numerically in order to calculate the free energy, the order parameter of the host superconductor, the internal magnetic field due to the supercurrents, the corresponding current density, the magnetization probed in the vicinity of the dot, and the normal electron density as a function of the various parameters of the system. We find that, as we increase the magnetic moment of the dot, higher flux quanta vortex states become energetically more favorable, as they can better compete with the external magnetic field via the Meissner effect. In addition to that, they progressively become closer to each other in energy with direct experimental consequences, i.e. physical quantities like magnetization may fluctuate when measured, for example, as a function of a uniform external magnetic field.Comment: text 21 pages (REVTEX), 8 figures available upon reques

    Small heat shock proteins are induced during multiple sclerosis lesion development in white but not grey matter

    Get PDF
    INTRODUCTION: The important protective role of small heat-shock proteins (HSPs) in regulating cellular survival and migration, counteracting protein aggregation, preventing apoptosis, and regulating inflammation in the central nervous system is now well-recognized. Yet, their role in the neuroinflammatory disorder multiple sclerosis (MS) is largely undocumented. With the exception of alpha B-crystallin (HSPB5), little is known about the roles of small HSPs in disease. RESULTS: Here, we examined the expression of four small HSPs during lesion development in MS, focussing on their cellular distribution, and regional differences between white matter (WM) and grey matter (GM). It is well known that MS lesions in these areas differ markedly in their pathology, with substantially more intense blood-brain barrier damage, leukocyte infiltration and microglial activation typifying WM but not GM lesions. We analysed transcript levels and protein distribution profiles for HSPB1, HSPB6, HSPB8 and HSPB11 in MS lesions at different stages, comparing them with normal-appearing brain tissue from MS patients and non-neurological controls. During active stages of demyelination in WM, and especially the centre of chronic active MS lesions, we found significantly increased expression of HSPB1, HSPB6 and HSPB8, but not HSPB11. When induced, small HSPs were exclusively found in astrocytes but not in oligodendrocytes, microglia or neurons. Surprisingly, while the numbers of astrocytes displaying high expression of small HSPs were markedly increased in actively demyelinating lesions in WM, no such induction was observed in GM lesions. This difference was particularly obvious in leukocortical lesions covering both WM and GM areas. CONCLUSIONS: Since induction of small HSPs in astrocytes is apparently a secondary response to damage, their differential expression between WM and GM likely reflects differences in mediators that accompany demyelination in either WM or GM during MS. Our findings also suggest that during MS, cortical structures fail to benefit from the protective actions of small HSPs. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40478-015-0267-2) contains supplementary material, which is available to authorized users

    Lack of trust in maternal support is associated with negative interpretations of ambiguous maternal behavior

    Get PDF
    Attachment theory assumes that children who lack trust in maternal availability for support are more inclined to interpret maternal behavior in congruence with their expectation that mother will remain unavailable for support. To provide the first test of this assumption, early adolescents (9-13 years old) were asked to assess whether ambiguous interactions with mother should be interpreted in a positive or a negative way. In our sample (n = 322), results showed that early adolescents' lack of trust in their mother's availability for support was related to more negative interpretations of maternal behavior. The associations remained significant after controlling for depressive mood. The importance of these findings for our understanding of attachment theory, attachment stability, and clinical practice are discussed

    Stability of multiquantum vortices in dilute Bose-Einstein condensates

    Full text link
    Multiply quantized vortices in trapped Bose-Einstein condensates are studied using the Bogoliubov theory. Suitable combinations of a localized pinning potential and external rotation of the system are found to energetically stabilize, both locally and globally, vortices with multiple circulation quanta. We present a phase diagram for stable multiply quantized vortices in terms of the angular rotation frequency and the width of the pinning potential. We argue that multiquantum vortices could be experimentally created using these two expedients.Comment: 5 pages, 4 figure

    Trapped electron coupled to superconducting devices

    Full text link
    We propose to couple a trapped single electron to superconducting structures located at a variable distance from the electron. The electron is captured in a cryogenic Penning trap using electric fields and a static magnetic field in the Tesla range. Measurements on the electron will allow investigating the properties of the superconductor such as vortex structure, damping and decoherence. We propose to couple a superconducting microwave resonator to the electron in order to realize a circuit QED-like experiment, as well as to couple superconducting Josephson junctions or superconducting quantum interferometers (SQUIDs) to the electron. The electron may also be coupled to a vortex which is situated in a double well potential, realized by nearby pinning centers in the superconductor, acting as a quantum mechanical two level system that can be controlled by a transport current tilting the double well potential. When the vortex is trapped in the interferometer arms of a SQUID, this would allow its detection both by the SQUID and by the electron.Comment: 13 pages, 5 figure

    Asymmetric Field Profile in Bose Glass Phase of Irradiated YBa2Cu3O7-d: Loss of Interlayer Coherence around 1/3 of Matching Field

    Full text link
    Magneto-optical imaging in YBa2Cu3O7-d with tilted columnar defects (CD's) shows an asymmetric critical-state field profile. The observed hysteretic shift of the profile ridge (trough) from the center of the sample is explained by in-plane magnetization originated from vortex alignment along CD's. The extracted ratio of the in-plane to out-of-plane magnetization component has a maximum at 1/5 of matching field (BΦB_\Phi) and disappears above BΦ/3B_\Phi/3, suggesting a reduction of interlayer coherence well bellow BΦB_\Phi in the Bose glass phase. Implications are discussed in comparison with the vortex liquid recoupling observed in irradiated Bi2Sr2CaCu2O8+y.Comment: Revtex, 4 pages, 5 figures, also see a movie at (http://www.ap6.t.u-tokyo.ac.jp/kitaka/Research/d-line/index_e.htm). This manuscript will appear in Phys. Rev. Let
    • …
    corecore