5,484 research outputs found
Computational Soundness for Dalvik Bytecode
Automatically analyzing information flow within Android applications that
rely on cryptographic operations with their computational security guarantees
imposes formidable challenges that existing approaches for understanding an
app's behavior struggle to meet. These approaches do not distinguish
cryptographic and non-cryptographic operations, and hence do not account for
cryptographic protections: f(m) is considered sensitive for a sensitive message
m irrespective of potential secrecy properties offered by a cryptographic
operation f. These approaches consequently provide a safe approximation of the
app's behavior, but they mistakenly classify a large fraction of apps as
potentially insecure and consequently yield overly pessimistic results.
In this paper, we show how cryptographic operations can be faithfully
included into existing approaches for automated app analysis. To this end, we
first show how cryptographic operations can be expressed as symbolic
abstractions within the comprehensive Dalvik bytecode language. These
abstractions are accessible to automated analysis, and they can be conveniently
added to existing app analysis tools using minor changes in their semantics.
Second, we show that our abstractions are faithful by providing the first
computational soundness result for Dalvik bytecode, i.e., the absence of
attacks against our symbolically abstracted program entails the absence of any
attacks against a suitable cryptographic program realization. We cast our
computational soundness result in the CoSP framework, which makes the result
modular and composable.Comment: Technical report for the ACM CCS 2016 conference pape
Quantitative information flow under generic leakage functions and adaptive adversaries
We put forward a model of action-based randomization mechanisms to analyse
quantitative information flow (QIF) under generic leakage functions, and under
possibly adaptive adversaries. This model subsumes many of the QIF models
proposed so far. Our main contributions include the following: (1) we identify
mild general conditions on the leakage function under which it is possible to
derive general and significant results on adaptive QIF; (2) we contrast the
efficiency of adaptive and non-adaptive strategies, showing that the latter are
as efficient as the former in terms of length up to an expansion factor bounded
by the number of available actions; (3) we show that the maximum information
leakage over strategies, given a finite time horizon, can be expressed in terms
of a Bellman equation. This can be used to compute an optimal finite strategy
recursively, by resorting to standard methods like backward induction.Comment: Revised and extended version of conference paper with the same title
appeared in Proc. of FORTE 2014, LNC
Моделирование кинетики синтеза Фишера- Тропша на ультрадисперсном катализаторе
Large area pulsed laser deposition of alumina on stainless steel with Ar or Ar/O2 mixtures as processing gas in investigated using excimer laser radiation. The high area coveraging was achieved by a simultaneous movement of target and substrate in combination with the use of a certain power density distribution achieving a special angular distribution of the vapour/plasma plume. The chemical properties of the films were studied by X-ray photoelectron spectroscopy, and the morphology and uniformness by optical microscopy and ellipsometry
Texture analysis using volume-radius fractal dimension
Texture plays an important role in computer vision. It is one of the most
important visual attributes used in image analysis, once it provides
information about pixel organization at different regions of the image. This
paper presents a novel approach for texture characterization, based on
complexity analysis. The proposed approach expands the idea of the Mass-radius
fractal dimension, a method originally developed for shape analysis, to a set
of coordinates in 3D-space that represents the texture under analysis in a
signature able to characterize efficiently different texture classes in terms
of complexity. An experiment using images from the Brodatz album illustrates
the method performance.Comment: 4 pages, 4 figure
Long term monitoring of bright TeV Blazars with the MAGIC telescope
The MAGIC telescope has performed long term monitoring observations of the
bright TeV Blazars Mrk421, Mrk501 and 1ES1959+650. Up to 40 observations, 30 to
60 minutes each have been performed for each source evenly distributed over the
observable period of the year. The sensitivity of MAGIC is sufficient to
establish a flux level of 25% of the Crab flux for each measurement. These
observations are well suited to trigger multiwavelength ToO observations and
the overall collected data allow an unbiased study of the flaring statistics of
the observed AGNs.Comment: 4 pages, 4 figures, to appear in the proceedings of the 30th
International Cosmic Ray Conference, Merida, July 200
Composable security of delegated quantum computation
Delegating difficult computations to remote large computation facilities,
with appropriate security guarantees, is a possible solution for the
ever-growing needs of personal computing power. For delegated computation
protocols to be usable in a larger context---or simply to securely run two
protocols in parallel---the security definitions need to be composable. Here,
we define composable security for delegated quantum computation. We distinguish
between protocols which provide only blindness---the computation is hidden from
the server---and those that are also verifiable---the client can check that it
has received the correct result. We show that the composable security
definition capturing both these notions can be reduced to a combination of
several distinct "trace-distance-type" criteria---which are, individually,
non-composable security definitions.
Additionally, we study the security of some known delegated quantum
computation protocols, including Broadbent, Fitzsimons and Kashefi's Universal
Blind Quantum Computation protocol. Even though these protocols were originally
proposed with insufficient security criteria, they turn out to still be secure
given the stronger composable definitions.Comment: 37+9 pages, 13 figures. v3: minor changes, new references. v2:
extended the reduction between composable and local security to include
entangled inputs, substantially rewritten the introduction to the Abstract
Cryptography (AC) framewor
Quantitative information flow, with a view
We put forward a general model intended for assessment of system security against passive eavesdroppers, both quantitatively ( how much information is leaked) and qualitatively ( what properties are leaked). To this purpose, we extend information hiding systems ( ihs ), a model where the secret-observable relation is represented as a noisy channel, with views : basically, partitions of the state-space. Given a view W and n independent observations of the system, one is interested in the probability that a Bayesian adversary wrongly predicts the class of W the underlying secret belongs to. We offer results that allow one to easily characterise the behaviour of this error probability as a function of the number of observations, in terms of the channel matrices defining the ihs and the view W . In particular, we provide expressions for the limit value as n → ∞, show by tight bounds that convergence is exponential, and also characterise the rate of convergence to predefined error thresholds. We then show a few instances of statistical attacks that can be assessed by a direct application of our model: attacks against modular exponentiation that exploit timing leaks, against anonymity in mix-nets and against privacy in sparse datasets
- …