3,470 research outputs found
Thermodynamic Entropy And The Accessible States of Some Simple Systems
Comparison of the thermodynamic entropy with Boltzmann's principle shows that
under conditions of constant volume the total number of arrangements in simple
thermodynamic systems with temperature-independent heat capacities is TC/k. A
physical interpretation of this function is given for three such systems; an
ideal monatomic gas, an ideal gas of diatomic molecules with rotational motion,
and a solid in the Dulong-Petit limit of high temperature. T1/2 emerges as a
natural measure of the number of accessible states for a single particle in one
dimension. Extension to N particles in three dimensions leads to TC/k as the
total number of possible arrangements or microstates. The different microstates
of the system are thus shown a posteriori to be equally probable, with
probability T-C/k, which implies that for the purposes of counting states the
particles of the gas are distinguishable. The most probable energy state of the
system is determined by the degeneracy of the microstates.Comment: 9 pages, 1 figur
Can Soldiers Be Peace Officers? The Waco Disaster and the Militarization of American Law Enforcement
One of the most significant trends of federal law enforcement in the last fifteen years has been its militarization. The logical, perhaps inevitable, consequence of that militarization was seen in the disaster at Waco, Texas, resulting in the deaths of four federal agents, and seventy-six other men, women, and children. In this article, we use the Waco tragedy as a starting point to examine the militarization of federal law enforcement, and similar trends at the state and local level.
Part Two of this article sets forth the details and rationale of the Posse Comitatus Act--the 1878 law forbidding use of the military in law enforcement. Part Three explicates how that Act was eroded by the drug war in the 1980s. The article then discusses how the drug exception to the Posse Comitatus Act was used to procure major military support for the Bureau of Alcohol, Tobacco and Firearms (BATF) raid against the Branch Davidians-even though there was no real drug evidence against them-and how the drug exceptions to the Posse Comitatus Act have made such abuses endemic.
Part Four examines the fifty-one day FBI siege of the Branch Davidian residence, with a focus on the destructive role played by the FBI\u27s Hostage Rescue Team, an essentially military force which has proved counterproductive in a civilian law enforcement context.
In Part Five we look at the problem of groupthink, its role in the Waco tragedy, and the importance of keeping groupthink-prone institutions-like the military-out of law enforcement.
Finally, Part Six offers a broader view of the problem of the militarization of federal law enforcement. We examine the proliferation of federal paramilitary units and federal efforts to promote the militarization of state and local law enforcement. After explaining the direct connection between the drug war and law enforcement militarization, we propose numerous statutory remedies to demilitarize law enforcement
Ab-initio study of structure and dynamics properties of crystalline ice
We investigated the structural and dynamical properties of a tetrahedrally
coordinated crystalline ice from first principles based on density functional
theory within the generalized gradient approximation with the projected
augmented wave method. First, we report the structural behaviour of ice at
finite temperatures based on the analysis of radial distribution functions
obtained by molecular dynamics simulations. The results show how the ordering
of the hydrogen bonding breaks down in the tetrahedral network of ice with
entropy increase in agreement with the neutron diffraction data. We also
calculated the phonon spectra of ice in a 3x1x1 supercell by using the direct
method. So far, due to the direct method used in this calculation, the phonon
spectra is obtained without taking into account the effect of polarization
arising from dipole-dipole interactions of water molecules which is expected to
yield the splitting of longitudinal and transverse optic modes at the
Gamma-point. The calculated longitudinal acoustic velocities from the initial
slopes of the acoustic mode is in a reasonable agreement with the neutron
scatering data. The analysis of the vibrational density of states shows the
existence of a boson peak at low energy of translational region a
characteristic common to amorphous systems.Comment: International symposium on structure and dynamics of heterogeneous
system SDHS'0
Accretion Disks and Dynamos: Toward a Unified Mean Field Theory
Conversion of gravitational energy into radiation in accretion discs and the
origin of large scale magnetic fields in astrophysical rotators have often been
distinct topics of research. In semi-analytic work on both problems it has been
useful to presume large scale symmetries, necessarily resulting in mean field
theories. MHD turbulence makes the underlying systems locally asymmetric and
nonlinear. Synergy between theory and simulations should aim for the
development of practical mean field models that capture essential physics and
can be used for observational modeling. Mean field dynamo (MFD) theory and
alpha-viscosity accretion theory exemplify such ongoing pursuits. 21st century
MFD theory has more nonlinear predictive power compared to 20th century MFD
theory, whereas accretion theory is still in a 20th century state. In fact,
insights from MFD theory are applicable to accretion theory and the two are
artificially separated pieces of what should be a single theory. I discuss
pieces of progress that provide clues toward a unified theory. A key concept is
that large scale magnetic fields can be sustained via local or global magnetic
helicity fluxes or via relaxation of small scale magnetic fluctuations, without
the kinetic helicity driver of 20th century textbooks. These concepts may help
explain the formation of large scale fields that supply non-local angular
momentum transport via coronae and jets in a unified theory of accretion and
dynamos. In diagnosing the role of helicities and helicity fluxes in disk
simulations, each disk hemisphere should be studied separately to avoid being
misled by cancelation that occurs as a result of reflection asymmetry. The
fraction of helical field energy in disks is expected to be small compared to
the total field in each hemisphere as a result of shear, but can still be
essential for large scale dynamo action.Comment: For the Proceedings of the Third International Conference and
Advanced School "Turbulent Mixing and Beyond," TMB-2011 held on 21 - 28
August 2011 at the Abdus Salam International Centre for Theoretical Physics,
Trieste, http://users.ictp.it/~tmb/index2011.html Italy, To Appear in Physica
Scripta (corrected small items to match version in print
A Connection between Star Formation in Nuclear Rings and their Host Galaxies
We present results from a photometric H-alpha survey of 22 nuclear rings,
aiming to provide insight into their star formation properties, including age
distribution, dynamical timescales, star formation rates, and galactic bar
influence. We find a clear relationship between the position angles and
ellipticities of the rings and those of their host galaxies, which indicates
the rings are in the same plane as the disk and circular. We use population
synthesis models to estimate ages of each H-alpha emitting HII region, which
range from 1 Myr to 10 Myrs throughout the rings. We find that approximately
half of the rings contain azimuthal age gradients that encompass at least 25%
of the ring, although there is no apparent relationship between the presence or
absence of age gradients and the morphology of the rings or their host
galaxies. NGC1343, NGC1530, and NGC4321 show clear bipolar age gradients, where
the youngest HII regions are located near the two contact points of the bar and
ring. We speculate in these cases that the gradients are related to an
increased mass inflow rate and/or an overall higher gas density in the ring,
which would allow for massive star formation to occur on short timescales,
after which the galactic rotation would transport the HII regions around the
ring as they age. Two-thirds of the barred galaxies show correlation between
the locations of the youngest HII region(s) in the ring and the location of the
contact points, which is consistent with predictions from numerical modeling.Comment: 23 pages, 10 figures (7 color), 23 tables, accepted for publication
in ApJS (Feb 08); NASA-GSFC, IAC, University of Maryland, STSc
Ohm's Law for a Relativistic Pair Plasma
We derive the fully relativistic Ohm's law for an electron-positron plasma.
The absence of non-resistive terms in Ohm's law and the natural substitution of
the 4-velocity for the velocity flux in the relativistic bulk plasma equations
do not require the field gradient length scale to be much larger than the
lepton inertial lengths, or the existence of a frame in which the distribution
functions are isotropic.Comment: 12 pages, plain TeX, Phys. Rev. Lett. 71 3481 (1993
Modeling the radial abundance distribution of the transition galaxy ngc 1313
NGC 1313 is the most massive disk galaxy showing a flat radial abundance
distribution in its interstellar gas, a behavior generally observed in
magellanic and irregular galaxies. We have attempted to reproduce this flat
abundance distribution using a multiphase chemical evolution model, which has
been previously used sucessfully to depict other spiral galaxies along the
Hubble morphological sequence. We found that it is not possible to reproduce
the flat radial abundance distribution in NGC 1313, and at the same time, be
consistent with observed radial distributions of other key parameters such the
surface gas density and star formation profiles. We conclude that a more
complicated galactic evolution model including radial flows, and possibly mass
loss due to supernova explosions and winds, is necessary to explain the
apparent chemical uniformity of the disk of NGC 1313Comment: 14 paginas, 4 figures, to be published in ApJ, apri
Dimensionless Measures of Turbulent Magnetohydrodynamic Dissipation Rates
The magnetic Reynolds number R_M, is defined as the product of a
characteristic scale and associated flow speed divided by the microphysical
magnetic diffusivity. For laminar flows, R_M also approximates the ratio of
advective to dissipative terms in the total magnetic energy equation, but for
turbulent flows this latter ratio depends on the energy spectra and approaches
unity in a steady state. To generalize for flows of arbitrary spectra we define
an effective magnetic dissipation number, R_{M,e}, as the ratio of the
advection to microphysical dissipation terms in the total magnetic energy
equation, incorporating the full spectrum of scales, arbitrary magnetic Prandtl
numbers, and distinct pairs of inner and outer scales for magnetic and kinetic
spectra. As expected, for a substantial parameter range R_{M,e}\sim {O}(1) <<
R_M. We also distinguish R_{M,e} from {\tilde R}_{M,e} where the latter is an
effective magnetic Reynolds number for the mean magnetic field equation when a
turbulent diffusivity is explicitly imposed as a closure. That R_{M,e} and
{\tilde R}_{M,e} approach unity even if R_M>>1 highlights that, just as in
hydrodynamic turbulence,energy dissipation of large scale structures in
turbulent flows via a cascade can be much faster than the dissipation of large
scale structures in laminar flows. This illustrates that the rate of energy
dissipation by magnetic reconnection is much faster in turbulent flows, and
much less sensitive to microphysical reconnection rates compared to laminar
flows.Comment: 14 pages (including 2 figs), accepted by MNRA
On the Stability and the Approximation of Branching Distribution Flows, with Applications to Nonlinear Multiple Target Filtering
We analyse the exponential stability properties of a class of measure-valued
equations arising in nonlinear multi-target filtering problems. We also prove
the uniform convergence properties w.r.t. the time parameter of a rather
general class of stochastic filtering algorithms, including sequential Monte
Carlo type models and mean eld particle interpretation models. We illustrate
these results in the context of the Bernoulli and the Probability Hypothesis
Density filter, yielding what seems to be the first results of this kind in
this subject
- âŠ