83 research outputs found

    Impurity intrusion in radio-frequency micro-plasma jets operated in ambient air

    Full text link
    Space and time resolved concentrations of helium metastable atoms in an atmospheric pressure radio-frequency micro-plasma jet were measured using tunable diode laser absorption spectroscopy. Spatial profiles as well as lifetime measurements show significant influences of air entering the discharge from the front nozzle and of impurities originating from the gas supply system. Quenching of metastables was used to deduce quantitative concentrations of intruding impurities. The impurity profile along the jet axis was determined from optical emission spectroscopy as well as their dependance on the feed gas flow through the jet.Comment: Journal of Physics D: Applied Physics (accepted), 6 page

    Clustering of aromatic residues in prion-like domains can tune the formation, state, and organization of biomolecular condensates

    Get PDF
    In immature oocytes, Balbiani bodies are conserved membraneless condensates implicated in oocyte polarization, the organization of mitochondria, and long-term organelle and RNA storage. I

    Plasma sheath tailoring by a magnetic field for three-dimensional plasma etching

    Full text link
    Three-dimensional (3D) etching of materials by plasmas is an ultimate challenge in microstructuring applications. A method is proposed to reach a controllable 3D structure by using masks in front of the surface in a plasma etch reactor in combination with local magnetic fields to steer the incident ions in the plasma sheath region towards the surface to reach 3D directionality during etching and deposition. This effect can be controlled by modifying the magnetic field and/or plasma properties to adjust the relationship between sheath thickness and mask feature size. Since the guiding length scale is the plasma sheath thickness, which for typical plasma densities is at least 10s of microns or larger, controlled directional etching and deposition target the field of microstructuring, e.g. of solids for sensors, optics, or microfluidics. In this proof-of-concept study, it is shown that E⃗×B⃗\vec{E}\times\vec{B} drifts tailor the local sheath expansion, thereby controlling the plasma density distribution and the transport when the plasma penetrates the mask during an RF cycle. This modified local plasma creates a 3D etch profile. This is shown experimentally as well as using 2d3v Particle-In-Cell/Monte Carlo collisions simulation

    Argon metastable dynamics in a filamentary jet micro-discharge at atmospheric pressure

    Full text link
    Space and time resolved concentrations of Ar (3P2^{3}P_2) metastable atoms at the exit of an atmospheric pressure radio-frequency micro-plasma jet were measured using tunable diode laser absorption spectroscopy. The discharge features a coaxial geometry with a hollow capillary as an inner electrode and a ceramic tube with metal ring as outer electrode. Absorption profiles of metastable atoms as well as optical emission measurements reveal the dynamics and the filamentary structure of the discharge. The average spatial distribution of Ar metastables is characterized with and without a target in front of the jet, showing that the target potential and therewith the electric field distribution substantially changes the filaments' expansion. Together with the detailed analysis of the ignition phase and the discharge's behavior under pulsed operation, the results give an insight into the excitation and de-excitation mechanisms

    Helium metastable species generation in atmospheric pressure RF plasma jets driven by tailored voltage waveforms in mixtures of He and N2

    Get PDF
    Spatially resolved tunable diode-laser absorption measurements of the absolute densities of He-I (23S1) metastables in a micro atmospheric pressure plasma jet operated in He/N2 and driven by 'peaks'- and 'valleys'-type tailored voltage waveforms are presented. The measurements are performed at different nitrogen admixture concentrations and peak-to-peak voltages with waveforms that consist of up to four consecutive harmonics of the fundamental frequency of 13.56 MHz. Comparisons of the measured metastable densities with those obtained from particle-in-cell/Monte Carlo collision simulations show a good quantitative agreement. The density of helium metastables is found to be significantly enhanced by increasing the number of consecutive driving harmonics. Their generation can be further optimized by tuning the peak-to-peak voltage amplitude and the concentration of the reactive gas admixture. These findings are understood based on detailed fundamental insights into the spatio-temporal electron dynamics gained from the simulations, which show that voltage waveform tailoring allows to control the electron energy distribution function to optimize the metastable generation. A high degree of correlation between the metastable creation rate and the electron impact excitation rate from the helium ground state into the He-I ((3s)3S1) level is observed for some conditions which may facilitate an estimation of the metastable densities based on phase resolved optical emission spectroscopy measurements of the 706.5 nm He-I line originating from the above level and metastable density values at proper reference conditions

    Representing the Windrush generation: metaphor in discourses then and now

    Get PDF
    This paper examines the ways in which the group of people now known as the Windrush generation, who moved to the UK in the period 1948–1971, have been represented in public discourse. This group has been adversely affected by the current ‘hostile environment’ policy in the UK regarding immigration. As I show, in the ensuing and highly critical debate, the government repeatedly positioned them as ‘good’ migrants and placed them in a binary opposition with ‘undesirable’ migrants, who they cite as the intended target of their policy. Using diachronic corpora of parliamentary debates and national media, I compare this contemporary rhetoric with (a) Windrush representations in the 1940s and 1950s, and (b) contemporary representation of those the government constructs as unwanted migrants. Taking metaphor as a key for the comparison I show that there is very little continuity or overlap in how the Windrush migrants were discussed at the time of their arrival and in the current period. Instead, there is a much greater proximity in the past representations of the Windrush migrants and the current representations of ‘undesirable’ migrants. This mismatch in actual and perceived representation at the time of arrival indicates how nostalgia functions in migration discourses, even facilitating anti-immigration arguments

    Axial light emission and Ar metastable densities in a parallel plate dc micro discharge in steady state and transient regimes

    Full text link
    Axial emission profiles in a parallel plate dc micro discharge (feedgas: argon; discharge gap d=1mm; pressure p=10Torr) were studied by means of time resolved imaging with a fast ICCD camera. Additionally, volt-ampere (V-A) characteristics were recorded and Ar* metastable densities were measured by tunable diode laser absorption spectroscopy (TDLAS). Axial emission profiles in the steady state regime are similar to corresponding profiles in standard size discharges (d=1cm, p=1Torr). For some discharge conditions relaxation oscillations are present when the micro discharge switches periodically between low current Townsend-like mode and normal glow. At the same time the axial emission profile shows transient behavior, starting with peak distribution at the anode, which gradually moves towards the cathode during the normal glow. The development of argon metastable densities highly correlates with the oscillating discharge current. Gas temperatures in the low current Townsend-like mode (T= 320-400K) and the high current glow mode (T=469-526K) were determined by the broadening of the recorded spectral profiles as a function of the discharge current.Comment: submitted to Plasma Sources Sci. Techno
    • …
    corecore