39 research outputs found

    Highly Precise and Developmentally Programmed Genome Assembly in Paramecium Requires Ligase IV–Dependent End Joining

    Get PDF
    During the sexual cycle of the ciliate Paramecium, assembly of the somatic genome includes the precise excision of tens of thousands of short, non-coding germline sequences (Internal Eliminated Sequences or IESs), each one flanked by two TA dinucleotides. It has been reported previously that these genome rearrangements are initiated by the introduction of developmentally programmed DNA double-strand breaks (DSBs), which depend on the domesticated transposase PiggyMac. These DSBs all exhibit a characteristic geometry, with 4-base 5â€Č overhangs centered on the conserved TA, and may readily align and undergo ligation with minimal processing. However, the molecular steps and actors involved in the final and precise assembly of somatic genes have remained unknown. We demonstrate here that Ligase IV and Xrcc4p, core components of the non-homologous end-joining pathway (NHEJ), are required both for the repair of IES excision sites and for the circularization of excised IESs. The transcription of LIG4 and XRCC4 is induced early during the sexual cycle and a Lig4p-GFP fusion protein accumulates in the developing somatic nucleus by the time IES excision takes place. RNAi–mediated silencing of either gene results in the persistence of free broken DNA ends, apparently protected against extensive resection. At the nucleotide level, controlled removal of the 5â€Č-terminal nucleotide occurs normally in LIG4-silenced cells, while nucleotide addition to the 3â€Č ends of the breaks is blocked, together with the final joining step, indicative of a coupling between NHEJ polymerase and ligase activities. Taken together, our data indicate that IES excision is a “cut-and-close” mechanism, which involves the introduction of initiating double-strand cleavages at both ends of each IES, followed by DSB repair via highly precise end joining. This work broadens our current view on how the cellular NHEJ pathway has cooperated with domesticated transposases for the emergence of new mechanisms involved in genome dynamics

    Gene expression in a paleopolyploid: a transcriptome resource for the ciliate Paramecium tetraurelia

    Get PDF
    International audienceBACKGROUND: The genome of Paramecium tetraurelia, a unicellular model that belongs to the ciliate phylum, has been shaped by at least 3 successive whole genome duplications (WGD). These dramatic events, which have also been documented in plants, animals and fungi, are resolved over evolutionary time by the loss of one duplicate for the majority of genes. Thanks to a low rate of large scale genome rearrangement in Paramecium, an unprecedented large number of gene duplicates of different ages have been identified, making this organism an outstanding model to investigate the evolutionary consequences of polyploidization. The most recent WGD, with 51% of pre-duplication genes still in 2 copies, provides a snapshot of a phase of rapid gene loss that is not accessible in more ancient polyploids such as yeast. RESULTS: We designed a custom oligonucleotide microarray platform for P. tetraurelia genome-wide expression profiling and used the platform to measure gene expression during 1) the sexual cycle of autogamy, 2) growth of new cilia in response to deciliation and 3) biogenesis of secretory granules after massive exocytosis. Genes that are differentially expressed during these time course experiments have expression patterns consistent with a very low rate of subfunctionalization (partition of ancestral functions between duplicated genes) in particular since the most recent polyploidization event. CONCLUSIONS: A public transcriptome resource is now available for Paramecium tetraurelia. The resource has been integrated into the ParameciumDB model organism database, providing searchable access to the data. The microarray platform, freely available through NimbleGen Systems, provides a robust, cost-effective approach for genome-wide expression profiling in P. tetraurelia. The expression data support previous studies showing that at short evolutionary times after a whole genome duplication, gene dosage balance constraints and not functional change are the major determinants of gene retention

    Involvement of Escherichia coli FIS protein in maintenance of bacteriophage mu lysogeny by the repressor: control of early transcription and inhibition of transposition.

    No full text
    The Escherichia coli FIS (factor for inversion stimulation) protein has been implicated in assisting bacteriophage Mu repressor, c, in maintaining the lysogenic state under certain conditions. In a fis strain, a temperature-inducible Mucts62 prophage is induced at lower temperatures than in a wild-type host (M. BĂ©termier, V. LefrĂšre, C. Koch, R. Alazard, and M. Chandler, Mol. Microbiol. 3:459-468, 1989). Increasing the prophage copy number rendered Mucts62 less sensitive to this effect of the fis mutation, which thus seems to depend critically on the level of repressor activity. The present study also provides evidence that FIS affects the control of Mu gene expression and transposition. As judged by the use of lac transcriptional fusions, repression of early transcription was reduced three- to fourfold in a fis background, and this could be compensated by an increase in cts62 gene copy number. c was also shown to inhibit Mu transposition two- to fourfold less strongly in a fis host. These modulatory effects, however, could not be correlated to sequence-specific binding of FIS to the Mu genome, in particular to the strong site previously identified on the left end. We therefore speculate that a more general function of FIS is responsible for the observed modulation of Mu lysogeny

    Assembly of a strong promoter following IS911 circularization and the role of circles in transposition.

    No full text
    When supplied with high levels of the IS911-encoded transposase, IS911-based transposons can excise as circles in which the right and left terminal inverted repeats are abutted. Formation of the circle junction is shown here to create a promoter, p(junc), which is significantly stronger than the indigenous promoter, pIRL, and is also capable of driving expression of the IS911 transposition proteins. High transposase expression from the circular transposon may promote use of the circle as an integration substrate. The results demonstrate that IS911 circles are highly efficient substrates for insertion into a target molecule in vivo. Insertion leads to the disassembly of p(junc) and thus to a lower level of synthesis of the transposition proteins. The observation that normal levels of IS911 transposition proteins supplied by wild-type copies of IS911 are also capable of generating transposon circles, albeit at a low level, reinforces the idea that the transposon circles might form part of the natural transposition cycle of IS911. These observations form the elements of a feedback control mechanism and have been incorporated into a model describing one possible pathway of IS911 transposition
    corecore