34 research outputs found
Conformity assessments and post-market monitoring: a guide to the role of auditing in the proposed European AI regulation
The proposed European Artificial Intelligence Act (AIA) is the first attempt to elaborate a general legal framework for AI carried out by any major global economy. As such, the AIA is likely to become a point of reference in the larger discourse on how AI systems can (and should) be regulated. In this article, we describe and discuss the two primary enforcement mechanisms proposed in the AIA: the <i>conformity assessments</i> that providers of high-risk AI systems are expected to conduct, and the <i>post-market monitoring plans</i> that providers must establish to document the performance of high-risk AI systems throughout their lifetimes. We argue that the AIA can be interpreted as a proposal to establish a Europe-wide ecosystem for conducting AI auditing, albeit in other words. Our analysis offers two main contributions. First, by describing the enforcement mechanisms included in the AIA in terminology borrowed from existing literature on AI auditing, we help providers of AI systems understand how they can prove adherence to the requirements set out in the AIA in practice. Second, by examining the AIA from an auditing perspective, we seek to provide transferable lessons from previous research about how to refine further the regulatory approach outlined in the AIA. We conclude by highlighting seven aspects of the AIA where amendments (or simply clarifications) would be helpful. These include, above all, the need to translate vague concepts into verifiable criteria and to strengthen the institutional safeguards concerning conformity assessments based on internal checks
Conformity assessments and post-market monitoring: a guide to the role of auditing in the proposed European AI regulation
The proposed European Artificial Intelligence Act (AIA) is the first attempt to elaborate a general legal framework for AI carried out by any major global economy. As such, the AIA is likely to become a point of reference in the larger discourse on how AI systems can (and should) be regulated. In this article, we describe and discuss the two primary enforcement mechanisms proposed in the AIA: the <i>conformity assessments</i> that providers of high-risk AI systems are expected to conduct, and the <i>post-market monitoring plans</i> that providers must establish to document the performance of high-risk AI systems throughout their lifetimes. We argue that the AIA can be interpreted as a proposal to establish a Europe-wide ecosystem for conducting AI auditing, albeit in other words. Our analysis offers two main contributions. First, by describing the enforcement mechanisms included in the AIA in terminology borrowed from existing literature on AI auditing, we help providers of AI systems understand how they can prove adherence to the requirements set out in the AIA in practice. Second, by examining the AIA from an auditing perspective, we seek to provide transferable lessons from previous research about how to refine further the regulatory approach outlined in the AIA. We conclude by highlighting seven aspects of the AIA where amendments (or simply clarifications) would be helpful. These include, above all, the need to translate vague concepts into verifiable criteria and to strengthen the institutional safeguards concerning conformity assessments based on internal checks
Strontium-substituted hydroxyapatite thin films grown by pulsed laser deposition.
Strontium substitution for calcium in the hydroxyapatite structure has lately attracted growing interest due to its beneficial effects on both bone formation and prevention of bone resorption. Coating Ti implants with Sr2+-substituted hydroxyapatite is expected to enhance the bioactivity of the surface and stimulate bone apposition. To this end, we deposited thin films of hydroxyapatite with different substitutions of Sr2+ for Ca2+ on Ti substrates by Pulsed Laser Deposition (PLD). Solid solutions of Sr-Ca hydroxyapatites \uf05bCa10-xSrxHA (x = 0-1)\uf05d were prepared by direct synthesis in aqueous medium at 90\ub0C. Sr2+ insertion led to a decrease of crystallinity degree, which accounted for the simultaneous reduction of the crystal dimensions. For PLD experiments, we used an UV excimer (KrF*) laser source (248 nm, ~7.4 ns) operating at a repetition rate of 2 Hz. The fluence during target irradiation was set at 2.4 J/cm2, and substrate temperature kept at 400\ub0C. The depositions were performed from HA at different degrees of Sr2+ substitution for Ca2+ (x = 0; 0.1; 0.5; 1). All structures were post-treated in a H2O enriched atmosphere for 6 h. The results of structural and morphological characterizations carried out on the obtained structures indicated that the coatings, which adhered well to the substrates, were made of crystalline HA and contained strontium with a (Ca+Sr)/P molar ratio close to the stoichiometric value of HA
Measurement error due to self-absorption in calibration-free laser-induced breakdown spectroscopy
Self-absorption of spectral lines is known to lower the performance of analytical measurements via calibration-free laser-induced breakdown spectroscopy. However, the error growth due to this effect is not clearly assessed. Here we propose a method to quantify the measurement error due to self-absorption based on the calculation of the spectral radiance of a plasma in local thermodynamic equilibrium. Validated through spectroscopic measurements for a binary alloy thin film of compositional gradient, the method evidences that measurement performance lowering due to self-absorption depends on the spectral shape of the analytical transition and on the intensity measurement method. Thus, line-integrated intensity measurements of Stark broadened lines enable accurate analysis, even at large optical thickness, if line width and plasma size are precisely known. The error growth due to self-absorption is significantly larger for line shapes dominated by Doppler broadening and for line-center intensity measurements. The findings present a significant advance in compositional measurements via calibration-free laser-induced breakdown spectroscopy, as they enable straightforward selection of most appropriate analytical lines