20 research outputs found

    Functionalization of Titanium surface with Chitosan via silanation: 3D CLSM imaging of cell biocompatibility behaviour

    Get PDF
    Introduction Biocompatibility ranks as one of the most important properties of dental materials. One of the criteria for biocompatibility is the absence of material toxicity to cells, according to the ISO 7405 and 10993 recommendations. Among numerous available methods for toxicity assessment; 3-dimensional Confocal Laser Scanning Microscopy (3D CLSM) imaging was chosen because it provides an accurate and sensitive index of living cell behavior in contact with chitosan coated tested implants. Objectives: The purpose of this study was to investigate the in vitro biocompatibility of functionalized titanium with chitosan via a silanation using sensitive and innovative 3D CLSM imaging as an investigation method for cytotoxicity assessment. Methods The biocompatibility of four samples (controls cells, TA6V, TA6V-TESBA and TA6V-TESBAChitosan) was compared in vitro after 24h of exposure. Confocal imaging was performed on cultured human gingival fibroblast (HGF1) like cells using Live/Dead® staining. Image series were obtained with a FV10i confocal biological inverted system and analyzed with FV10-ASW 3.1 Software (Olympus France). Results Image analysis showed no cytotoxicity in the presence of the three tested substrates after 24 h of contact. A slight decrease of cell viability was found in contact with TA6V-TESBA with and without chitosan compared to negative control cells. Conclusion Our findings highlighted the use of 3D CLSM confocal imaging as a sensitive method to evaluate qualitatively and quantitatively the biocompatibility behavior of functionalized titanium with chitosan via a silanation. The biocompatibility of the new functionalized coating to HGF1 cells is as good as the reference in biomedical device implantation TA6V

    Magnetic anisotropy Berry's phase

    No full text
    By considering the intrinsic anisotropy, present in almost all magnetic systems, as a perturbation to the usual Zeeman term, we show that the spin-spin dipolar interaction also known as zero-field splitting (ZFS) leads to an extra geometrical phase in addition to the conventional Berry's phase. Furthermore, we suggest some ways to observe the energy shift in electron paramagnetic resonance spectra due to Berry's phase and how we can separate it from the conventional Zeeman Berry's phase. One of the authors (MM) dedicates this work to the memory of his mother, Djabou Zoulikha, who died on 3 February 2019

    SentiML++ : An Extension of the SentiML Sentiment Annotation Scheme

    No full text
    International audienceIn this paper, we propose SentiML++, an extension of SentiML with a focus on annotating opinions answering aspects of the general question \who has what opinion about whom in which context?". A detailed comparison with SentiML and other existing annotation schemes is also presented. The data collection annotated with SentiML has also been annotated withSentiML++ and is available for download for research purpose
    corecore