38 research outputs found

    Regulation of the neural niche by the soluble molecule Akhirin

    Get PDF
    Though the adult central nervous system has been considered a comparatively static tissue with little turnover, it is well established today that new neural cells are generated throughout life. Neural stem/progenitor cells (NS/PCs) can self‐renew and generate all types of neural cells. The proliferation of NS/PCs, and differentiation and fate determination of PCs are regulated by extrinsic factors such as growth factors, neurotrophins, and morphogens. Although several extrinsic factors that influence neurogenesis have already been reported, little is known about the role of soluble molecules in neural niche regulation. In this review, we will introduce the soluble molecule Akhirin and discuss its role in the eye and spinal cord during development

    Regulation of the neural niche by the soluble molecule Akhirin

    No full text
    Though the adult central nervous system has been considered a comparatively static tissue with little turnover, it is well established today that new neural cells are generated throughout life. Neural stem/progenitor cells (NS/PCs) can self‐renew and generate all types of neural cells. The proliferation of NS/PCs, and differentiation and fate determination of PCs are regulated by extrinsic factors such as growth factors, neurotrophins, and morphogens. Although several extrinsic factors that influence neurogenesis have already been reported, little is known about the role of soluble molecules in neural niche regulation. In this review, we will introduce the soluble molecule Akhirin and discuss its role in the eye and spinal cord during development

    Long-Noncoding RNA TUG1

    No full text

    Tsukushi expression is dependent on Notch signaling and oscillated in the presomitic mesoderm during chick somitogenesis

    No full text
    During somitogenesis, segmentation of the body axis occurs by epithelial somites budding off from the rostral end of the unsegmented presomitic mesoderm (PSM), and its molecular regulation is achieved by a molecular oscillator and signaling molecules. Tsukushi (TSK) is a unique secreted protein and involved in diverse biological cascades in vertebrate embryos by modulating several signaling pathways at the extracellular region. However, the involvement of TSK in somitogenesis remains unknown. In this study, we investigated the detailed expression patterns of TSK at different developmental stages of a chick embryo. Chick-TSK (C-TSK) is expressed in the PSM and shows an oscillation pattern with three phases. The oscillation pattern of C-TSK in the PSM is similar to that of c-Notch1 and c-haity1, but not to c-Delta1. Our in vitro data showed that Notch signaling is necessary for the normal expression of C-TSK and that expression of C-TSK is an intrinsic property of the anterior PSM. These data suggest that TSK plays a role in chick somitogenesis. (C) 2015 Elsevier Inc. All rights reserved

    Disruption of RAB-5 increases EFF-1 fusogen availability at the cell surface and promotes the regenerative axonal fusion capacity of the neuron

    No full text
    Following a transection injury to the axon, neurons from a number of species have the ability to undergo spontaneous repair via fusion of the two separated axonal fragments. In the nematode , this highly efficient regenerative axonal fusion is mediated by epithelial fusion failure-1 (EFF-1), a fusogenic protein that functions at the membrane to merge the two axonal fragments. Identifying modulators of axonal fusion and EFF-1 is an important step toward a better understanding of this repair process. Here, we present evidence that the small GTPase RAB-5 acts to inhibit axonal fusion, a function achieved via endocytosis of EFF-1 within the injured neuron. Therefore, we find that perturbing RAB-5 activity is sufficient to restore axonal fusion in mutant animals with decreased axonal fusion capacity. This is accompanied by enhanced membranous localization of EFF-1 and the production of extracellular EFF-1-containing vesicles. These findings identify RAB-5 as a novel regulator of axonal fusion in hermaphrodites and the first regulator of EFF-1 in neurons. Peripheral and central nerve injuries cause life-long disabilities due to the fact that repair rarely leads to reinnervation of the target tissue. In the nematode , axonal regeneration can proceed through axonal fusion, whereby a regrowing axon reconnects and fuses with its own separated distal fragment, restoring the original axonal tract. We have characterized axonal fusion and established that the fusogen epithelial fusion failure-1 (EFF-1) is a key element for fusing the two separated axonal fragments back together. Here, we show that the small GTPase RAB-5 is a key cell-intrinsic regulator of the fusogen EFF-1 and can in turn regulate axonal fusion. Our findings expand the possibility for this process to be controlled and exploited to facilitate axonal repair in medical applications

    Elucidation of anti-hyperglycemic activity of Psidium guajava L. leaves extract on streptozotocin induced neonatal diabetic Long-Evans rats

    No full text
    Background: Psidium guajava L (Guava) belongs to the Myrtaceae family and has been claimed to possess several pharmacological properties including antidiabetic. Objective: This study was designed to evaluate the anti-hyperglycemic activity of P guajava L leaves aqueous extract on neonatal streptozotocin-induced type 2 diabetic model rats. Methods: Streptozotocin was induced (90 mg/kg) intraperitoneally to 48 h old Long Evans rat pups. After three months, 18 male type-2 diabetic model rats were confirmed by OGTT (FG > 7 mmol/L). Therefore, experimental rats were divided into three groups 2) Diabetic water control (10 ml/kg), 3) Gliclazide treated (20 mg/kg), and 4) Extract treated group (1.25g/kg)] Six normal female rats comprised group 1 [Non-diabetic water control (10 ml/kg)]. All rats were treated orally with their respective treatment for 28 consecutive days. Blood samples were collected on 0 days (by tail cut method) and the end day (by cardiac puncture) of the experiment. The anti-hyperglycemic activity was evaluated by measuring fasting glucose, serum insulin, lipid profile, hepatic glycogen content, and intestinal glucose absorption by standard methods. Results: The serum glucose level of extract treated group was decreased by 16% as well as significantly (p<0.05) increased the serum insulin level (M±SD, 0 day vs 28thday; 0.319 ± 0.110 vs 0.600 ± 0.348, Όg/L). Moreover, the extract-treated group also significantly (p<0.05) enhanced liver glycogen content and inhibited glucose absorption from the upper intestine. Besides, a significant (p < 0.05) reduction of LDL-cholesterol level was found in the extract-treated group (M±SD, 55 ± 33 vs 14 ± 9, mg/dl) compared with baseline values where other groups did not show any statistically remarkable changes. Conclusion: Current study concludes that P guajava leaves aqueous extract enhances insulin secretion from pancreatic beta-cells and promotes glycogen synthesis in the liver. The extract also inhibits glucose absorption from the upper intestine and improves dyslipidemia to some extent. Therefore, possesses the potential for drug development against T2DM
    corecore