17 research outputs found

    Relative Reactivity of Biogenic and Chemogenic Uraninite and Biogenic Non-Crystalline U(IV)

    Get PDF
    Aqueous chemical extractions and X-ray absorption spectroscopy (XAS) analyses were conducted to investigate the reactivity of chemogenic uraninite, nanoparticulate biogenic uraninite, and biogenic monomeric U(IV) species. The analyses were conducted in systems containing a total U concentration that ranged from 1.48 to 2.10 mM. Less than 0.02% of the total U was released to solution in extractions that targeted water-soluble and ion exchangeable fractions. Less than 5% of the total U was solubilized via complexation with a 0.1 M solution of NaF. Greater than 90% of the total U was extracted from biogenic uraninite and monomeric U(IV) after 6 h of reaction in an oxidizing solution of 50 mM K2S2O8. Additional oxidation experiments with lower concentrations (2 mM and 10 mM) of K2S2O8 and 8.2 L-1 dissolved oxygen suggested that monomeric U(IV) species are more labile than biogenic uraninite; chemogenic uraninite was much less susceptible to oxidation than either form of biogenic U(IV). These results suggest that noncrystalline forms of U(IV) may be more labile than uraninite in subsurface environments. This work helps fill critical gaps in our understanding of the behavior of solid-associated U(IV) species in bioremediated sites and natural uranium ore deposits

    Inverse Temperature Dependence of Charge Carrier Hopping in Quantum Dot Solids

    No full text
    In semiconductors, increasing mobility with decreasing temperature is a signature of charge carrier transport through delocalized bands. Here, we show that this behavior can also occur in nanocrystal solids due to temperature-dependent structural transformations. Using a combination of broadband infrared transient absorption spectroscopy and numerical modeling, we investigate the temperature-dependent charge transport properties of well-ordered PbS quantum dot (QD) solids. Contrary to expectations, we observe that the QD-to-QD charge tunneling rate increases with decreasing temperature, while simultaneously exhibiting thermally activated nearest-neighbor hopping behavior. Using synchrotron grazing-incidence small-angle X-ray scattering, we show that this trend is driven by a temperature-dependent reduction in nearest-neighbor separation that is quantitatively consistent with the measured tunneling rate
    corecore