21 research outputs found

    Imaging shear stress distribution and evaluating the stress concentration factor of the human eye.

    Get PDF
    Healthy eyes are vital for a better quality of human life. Historically, for man-made materials, scientists and engineers use stress concentration factors to characterise the effects of structural non-homogeneities on their mechanical strength. However, such information is scarce for the human eye. Here we present the shear stress distribution profiles of a healthy human cornea surface in vivo using photo-stress analysis tomography, which is a non-intrusive and non-X-ray based method. The corneal birefringent retardation measured here is comparable to that of previous studies. Using this, we derive eye stress concentration factors and the directional alignment of major principal stress on the surface of the cornea. Similar to thermometers being used for monitoring the general health in humans, this report provides a foundation to characterise the shear stress carrying capacity of the cornea, and a potential bench mark for validating theoretical modelling of stresses in the human eye in future

    Quantification of collagen organization in the peripheral human cornea at micron-scale resolution

    Get PDF
    The collagen microstructure of the peripheral cornea is important in stabilizing corneal curvature and refractive status. However, the manner in which the predominantly orthogonal collagen fibrils of the central cornea integrate with the circumferential limbal collagen is unknown. We used microfocus wide-angle x-ray scattering to quantify the relative proportion and orientation of collagen fibrils over the human corneolimbal interface at intervals of 50 μm. Orthogonal fibrils changed direction 1–1.5 mm before the limbus to integrate with the circumferential limbal fibrils. Outside the central 6 mm, additional preferentially aligned collagen was found to reinforce the cornea and limbus. The manner of integration and degree of reinforcement varied significantly depending on the direction along which the limbus was approached. We also employed small-angle x-ray scattering to measure the average collagen fibril diameter from central cornea to limbus at 0.5 mm intervals. Fibril diameter was constant across the central 6 mm. More peripherally, fibril diameter increased, indicative of a merging of corneal and scleral collagen. The point of increase varied with direction, consistent with a scheme in which the oblique corneal periphery is reinforced by chords of scleral collagen. The results have implications for the cornea's biomechanical response to ocular surgeries involving peripheral incision

    The effect of changing intraocular pressure on the corneal and scleral curvatures in the fresh porcine eye

    No full text
    AIM: To measure corneal and scleral radii of curvature in response to intraocular pressure (IOP). METHODS: Using digital photographic profile images of 16 fresh porcine eyes, the curvatures of the cornea and sclera were determined in response to five consecutive incremental 100 μl saline intravitreal injections. IOP was measured and ocular rigidity calculated. Elastic moduli of the cornea and sclera were estimated. RESULTS: Intraocular pressure and the radius of curvature of the sclera increased linearly with increasing volume. There was no statistical change in corneal curvature. The elasticity of the cornea and sclera was constant during the 15–50 mm Hg increase in IOP. The estimated range of the elastic moduli of the cornea and sclera were, respectively 0.07–0.29 MPa and 0.2 MPa to 0.5 MPa. The scleral rigidity ranged from 0.0017 to 0.0022. CONCLUSIONS: The elastic moduli of the cornea and sclera are independent of IOP. The modulus of elasticity of the sclera is higher than that of the cornea. Elevation of IOP changes the curvature of the sclera but not that of the cornea. Porcine scleral rigidity is similar to human scleral rigidity. Scleral curvature could be a novel method for measuring IOP

    A Combined Simulation and Deep Learning Approach for Image-based Force Estimation during Robotized Intravitreal Injections

    Get PDF
    International audienceIntravitreal injection is one of the most common treatment strategies for chronic ophthalmic diseases. The last decade has seen the number of intravitreal injections dramatically increase, and with it, adverse effects and limitations. To overcome these issues, medical assistive devices for robotized injections have been proposed and are projected to improve delivery mechanisms for new generation of pharmacological solutions. In our work, we propose a method aimed at improving the safety features of such envisioned robotic systems. Our vision-based method uses a combination of 2D OCT data, numerical simulation and machine learning to estimate the range of the force applied by an injection needle on the sclera. We build a Neural Network (NN) to predict force ranges from Optical Coherence Tomography (OCT) images of the sclera directly. To avoid the need of large training data sets, the NN is trained on images of simulated deformed sclera. We validate our approach on real OCT images collected on five ex vivo porcine eyes using a robotically-controlled needle. Results show that the applied force range can be predicted with 94% accuracy. Being real-time, this solution can be integrated in the control loop of the system, allowing for in-time withdrawal of the needle
    corecore