48 research outputs found

    Chemokine expression in renal ischemia/reperfusion injury is most profound during the reparative phase

    Get PDF
    Chemokines are important players in the migration of leukocytes to sites of injury and are also involved in angiogenesis, development and wound healing. In this study, we performed microarray analyses to identify chemokines that play a role during the inflammatory and repair phase after renal ischemia/reperfusion (I/R) injury and investigated the temporal relationship between chemokine expression, leukocyte accumulation and renal damage/repair. C57Bl/6 mice were subjected to unilateral ischemia for 45 min and sacrificed 3 h, 1 day and 7 days after reperfusion. From ischemic and contralateral kidney, RNA was isolated and hybridized to a microarray. Microarray results were validated with quantitative real-time reverse transcription–PCR (QRT–PCR) on RNA from an independent experiment. (Immuno)histochemical analyses were performed to determine renal damage/repair and influx of leukocytes. Twenty out of 114 genes were up-regulated at one or more reperfusion periods. All these genes were up-regulated 7 days after I/R. Up-regulated genes included CC chemokines MCP-1 and TARC, CXC chemokines KC and MIP-2α, chemokine receptors Ccr1 and Cx3cr1 and related genes like matrix metalloproteinases. Microarray data of 1 and 7 days were confirmed for 17 up-regulated genes by QRT–PCR. (Immuno)histochemical analysis showed that the inflammatory and repair phase after renal I/R injury take place after, respectively, 1 and 7 days. Interestingly, chemokine expression was highest during the repair phase. In addition, expression profiles showed a biphasic expression of all up-regulated CXC chemokines coinciding with the early inflammatory and late repair phase. In conclusion, we propose that temporal expression of chemokines is a crucial factor in the regulation of renal I/R injury and repair

    Spontaneous focal activation of invariant natural killer T (iNKT) cells in mouse liver and kidney

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Invariant natural killer T (iNKT) cells differ from other T cells by their hyperactive effector T-cell status, in addition to the expression of NK lineage receptors and semi-invariant T-cell receptors. It is generally agreed that the immune phenotype of iNKT cells is maintained by repeated activation in peripheral tissues although no explicit evidence for such iNKT cell activity <it>in vivo </it>has so far been reported.</p> <p>Results</p> <p>We used an interferon (IFN)-γ-inducible cytoplasmic protein, Irga6, as a histological marker for local IFN-γ production. Irga6 was intensely expressed in small foci of liver parenchymal cells and kidney tubular epithelium. Focal Irga6 expression was unaffected by germ-free status or loss of TLR signalling and was totally dependent on IFN-γ secreted by T cells in the centres of expression foci. These were shown to be iNKT cells by diagnostic T cell receptor usage and their activity was lost in both CD1 d and Jα-deficient mice.</p> <p>Conclusions</p> <p>This is the first report that supplies direct evidence for explicit activation events of NKT cells <it>in vivo </it>and raises issues about the triggering mechanism and consequences for immune functions in liver and kidney.</p

    Immune Response to Lactobacillus plantarum Expressing Borrelia burgdorferi OspA Is Modulated by the Lipid Modification of the Antigen

    Get PDF
    Over the past decade there has been increasing interest in the use of lactic acid bacteria as mucosal delivery vehicles for vaccine antigens, microbicides and therapeutics. We investigated the mechanism by which a mucosal vaccine based in recombinant lactic acid bacteria breaks the immunological tolerance of the gut in order to elicit a protective immune response.We analyzed how the lipid modification of OspA affects the localization of the antigen in our delivery vehicle using a number of biochemistry techniques. Furthermore, we examined how OspA-expressing L. plantarum breaks the oral tolerance of the gut by stimulating human intestinal epithelial cells, peripheral blood mononuclear cells and monocyte derived dendritic cells and measuring cytokine production. We show that the leader peptide of OspA targets the protein to the cell envelope of L. plantarum, and it is responsible for protein export across the membrane. Mutation of the lipidation site in OspA redirects protein localization within the cell envelope. Further, we show that lipidated-OspA-expressing L. plantarum does not induce secretion of the pro-inflammatory cytokine IL-8 by intestinal epithelial cells. In addition, it breaks oral tolerance of the gut via Th1/Th2 cell mediated immunity, as shown by the production of pro- and anti-inflammatory cytokines by human dendritic cells, and by the production of IgG2a and IgG1 antibodies, respectively.Lipid modification of OspA expressed in L. plantarum modulates the immune response to this antigen through a Th1/Th2 immune response
    corecore