232 research outputs found

    On discontinuous Galerkin and discrete ordinates approximations for neutron transport equation and the critical eigenvalue

    Get PDF
    The objective of this paper is to give a mathematical framework for a fully discrete numerical approach for the study of the neutron transport equation in a cylindrical domain (container model). More specifically, we consider the discontinuous Galerkin (DG) finite element method for spatial approximation of the mono-energetic, critical neutron transport equation in an infinite cylindrical domain e Ω in R3 with a polygonal convex cross-section Ω. The velocity discretization relies on a special quadrature rule developed to give optimal estimates in discrete ordinate parameters compatible with the quasi-uniform spatial mesh. We use interpolation spaces and derive optimal error estimates, up to maximal available regularity, for the fully discrete scalar flux. Finally we employ a duality argument and prove superconvergence estimates for the critical eigenvalue

    Phase diagram of the XXZ ferrimagnetic spin-(1/2, 1) chain in the presence of transverse magnetic field

    Full text link
    We investigate the phase diagram of an anisotropic ferrimagnet spin-(1/2, 1) in the presence of a non-commuting (transverse) magnetic field. We find a magnetization plateau for the isotropic case while there is no plateau for the anisotropic ferrimagnet. The magnetization plateau can appear only when the Hamiltonian has the U(1) symmetry in the presence of the magnetic field. The anisotropic model is driven by the magnetic field from the N\'{e}el phase for low fields to the spin-flop phase for intermediate fields and then to the paramagnetic phase for high fields. We find the quantum critical points and their dependence on the anisotropy of the aforementioned field-induced quantum phase transitions. The spin-flop phase corresponds to the spontaneous breaking of Z2 symmetry. We use the numerical density matrix renormalization group and analytic spin wave theory to find the phase diagram of the model. The energy gap, sublattice magnetization, and total magnetization parallel and perpendicular to the magnetic field are also calculated. The elementary excitation spectrums of the model are obtained via the spin wave theory in the three different regimes depending on the strength of the magnetic field.Comment: 14 pages, 11 eps figure

    In vivo bioluminescence imaging using orthotopic xenografts towards patient's derived-xenograft Medulloblastoma models

    Get PDF
    BACKGROUND: Medulloblastoma is a cerebellar neoplasia of the central nervous system. Four molecular subgrups have been identified (MBWNT, MBSHH, MBgroup3 and MBgroup4) with distinct genetics and clinical outcome. Among these, MBgroup3-4 are highly metastatic with the worst prognosis. The current standard therapy includes surgery, radiation and chemotherapy. Thus, specific treatments adapted to cure those different molecular subgroups are needed. The use of orthotopic xenograft models, together with the non-invasive in vivo biolumiscence imaging (BLI) technology, is emerging during preclinical studies to test novel therapeutics for medulloblastoma treatment. METHODS: Orthotopic MB xenografts were performed by injection of Daoy-luc cells, that had been previously infected with lentiviral particles to stably express luciferase gene, into the fourth right ventricle of the cerebellum of ten nude mice. For the implantation, specific stereotactic coordinates were used. Seven days after the implantation the mice were imaged by acquisitions of bioluminescence imaging (BLI) using IVIS 3D Illumina Imaging System (Xenogen). Tumor growth was evaluated by quantifying the bioluminescence signals using the integrated fluxes of photons within each area of interest using the Living Images Software Package 3.2 (Xenogen-Perkin Elmer). Finally, histological analysis using hematoxylin-eosin staining was performed to confirm the presence of tumorigenic cells into the cerebellum of the mice. RESULTS: We describe a method to use the in vivo bioluminescent imaging (BLI) showing the potential to be used to investigate the potential antitumorigenic effects of a drug for in vivo medulloblastoma treatment. We also discuss other studies in which this technology has been applied to obtain a more comprehensive knowledge of medulloblastoma using orthotopic xenograft mouse models. CONCLUSIONS: There is a need to develop patient's derived-xenograft (PDX) model systems to test novel drugs for medulloblastoma treatment within each molecular sub-groups with a higher predictive value. Here we show how this technology should be applied with hopes on generations of new treatments to be applied then in human

    A competitive cell-permeable peptide impairs Nme-1 (NDPK-A) and Prune-1 interaction: therapeutic applications in cancer.

    Get PDF
    The understanding of protein–protein interactions is crucial in order to generate a second level of functional genomic analysis in human disease. Within a cellular microenvironment, protein–protein interactions generate new functions that can be defined by single or multiple modes of protein interactions. We outline here the clinical importance of targeting of the Nme-1 (NDPK-A)–Prune-1 protein complex in cancer, where an imbalance in the formation of this protein–protein complex can result in inhibition of tumor progression. We discuss here recent functional data using a small synthetic competitive cell-permeable peptide (CPP) that has shown therapeutic efficacy for impairing formation of the Nme-1–Prune-1 protein complex in mouse preclinical xenograft tumor models (e.g., breast, prostate, colon, and neuroblastoma). We thus believe that further discoveries in the near future related to the identification of new protein–protein interactions will have great impact on the development of new therapeutic strategies against various cancers

    An N-of-1 Evaluation Framework for Behaviour Change Applications

    Get PDF
    Mobile behaviour change applications should be evaluated for their effectiveness in promoting the intended behavior changes. In this paper we argue that the 'gold standard' form of effectiveness evaluation, the randomised controlled trial, has shortcomings when applied to mobile applications. We propose that N-of-1 (also known as single case design) based approaches have advantages. There is currently a lack of guidance for researchers and developers on how to take this approach. We present a framework encompassing three phases and two related checklists for performing N-of-1 evaluations. We also present our analysis of using this framework in the development and deployment of an app that encourages people to walk more. Our key findings are that there are challenges in designing engaging apps that automate N-of-1 procedures, and that there are challenges in collecting sufficient data of good quality. Further research should address these challenges

    Regulation of ctla-4 and pd-l1 expression in relapsing-remitting multiple sclerosis patients after treatment with fingolimod, ifnβ-1α, glatiramer acetate, and dimethyl fumarate drugs

    Get PDF
    Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system (CNS) that is characterized by inflammation which typically results in significant impairment in most patients. Immune checkpoints act as co-stimulatory and co-inhibitory molecules and play a fundamental role in keeping the equilibrium of the immune system. Cytotoxic T-lymphocyte antigen-4 (CTLA-4) and Programmed death-ligand 1 (PD-L1), as inhibitory immune checkpoints, participate in terminating the development of numerous autoimmune diseases, including MS. We assessed the CTLA-4 and PD-L1 gene expression in the different cell types of peripheral blood mononuclear cells of MS patients using single-cell RNA-seq data. Additionally, this study outlines how CTLA-4 and PD-L1 expression was altered in the PBMC samples of relapsing-remitting multiple sclerosis (RRMS) patients compared to the healthy group. Finally, it investigates the impact of various MS-related treatments in the CTLA-4 and PD-L1 expression to restrain autoreactive T cells and stop the development of MS autoimmunity

    Use of discontinuity factors in high-order finite element methods

    Full text link
    The discontinuity factors are a technique widely used in nodal methods to minimize the error due to spatial homogenization of cross sections for a coarse mesh core calculation. In the present work, the introduction of discontinuity factors in a high-order finite element approximation of the neutron diffusion equation is investigated. More precisely, classical reference and assembly discontinuity factors are introduced in a discontinuous Galerkin finite element method stabilized using an interior penalty formulation for the neutron diffusion equation. The proposed method is tested solving different one- and two-dimensional benchmark problems, showing that the discontinuity factors technique can be successfully introduced in the discontinuous Galerkin formulation. (C) 2015 Published by Elsevier Ltd.The work performed by the second, fifth, and sixth author was financially supported by the Swedish Research Council (VR - Vetenskapsradet) within a framework grant called DREAM4SAFER (Development of Revolutionary and Accurate Methods for Safety Analyses of Future and Existing Reactors), research contract C0467701.Vidal-Ferràndiz, A.; González Pintor, S.; Ginestar Peiro, D.; Verdú Martín, GJ.; Asadzadeh, M.; Demazière, C. (2016). Use of discontinuity factors in high-order finite element methods. Annals of Nuclear Energy. 87:728-738. https://doi.org/10.1016/j.anucene.2015.06.021S7287388
    • …
    corecore