765 research outputs found

    139La NMR evidence for phase solitons in the ground state of overdoped manganites

    Full text link
    Hole doped transition metal oxides are famous due to their extraordinary charge transport properties, such as high temperature superconductivity (cuprates) and colossal magnetoresistance (manganites). Astonishing, the mother system of these compounds is a Mott insulator, whereas important role in the establishment of the metallic or superconducting state is played by the way that holes are self-organized with doping. Experiments have shown that by adding holes the insulating phase breaks into antiferromagnetic (AFM) regions, which are separated by hole rich clumps (stripes) with a rapid change of the phase of the background spins and orbitals. However, recent experiments in overdoped manganites of the La(1-x)Ca(x)MnO(3) (LCMO) family have shown that instead of charge stripes, charge in these systems is organized in a uniform charge density wave (CDW). Besides, recent theoretical works predicted that the ground state is inhomogeneously modulated by orbital and charge solitons, i.e. narrow regions carrying charge (+/-)e/2, where the orbital arrangement varies very rapidly. So far, this has been only a theoretical prediction. Here, by using 139La Nuclear Magnetic Resonance (NMR) we provide direct evidence that the ground state of overdoped LCMO is indeed solitonic. By lowering temperature the narrow NMR spectra observed in the AFM phase are shown to wipe out, while for T<30K a very broad spectrum reappears, characteristic of an incommensurate (IC) charge and spin modulation. Remarkably, by further decreasing temperature, a relatively narrow feature emerges from the broad IC NMR signal, manifesting the formation of a solitonic modulation as T->0.Comment: 5 pages, 4 figure

    Metro-Line Crossing Minimization: Hardness, Approximations, and Tractable Cases

    Full text link
    Crossing minimization is one of the central problems in graph drawing. Recently, there has been an increased interest in the problem of minimizing crossings between paths in drawings of graphs. This is the metro-line crossing minimization problem (MLCM): Given an embedded graph and a set L of simple paths, called lines, order the lines on each edge so that the total number of crossings is minimized. So far, the complexity of MLCM has been an open problem. In contrast, the problem variant in which line ends must be placed in outermost position on their edges (MLCM-P) is known to be NP-hard. Our main results answer two open questions: (i) We show that MLCM is NP-hard. (ii) We give an O(logL)O(\sqrt{\log |L|})-approximation algorithm for MLCM-P

    Incommensurate itinerant antiferromagnetic excitations and spin resonance in the FeTe0.6_{0.6}Se0.4_{0.4} superconductor

    Full text link
    We report on inelastic neutron scattering measurements that find incommensurate itinerant like magnetic excitations in the normal state of superconducting FeTe0.6_{0.6}Se0.4_{0.4} (\Tc=14K) at wave-vector Qinc=(1/2±ϵ,1/2ϵ)\mathbf{Q}_{inc}=(1/2\pm\epsilon,1/2\mp\epsilon) with ϵ\epsilon=0.09(1). In the superconducting state only the lower energy part of the spectrum shows significant changes by the formation of a gap and a magnetic resonance that follows the dispersion of the normal state excitations. We use a four band model to describe the Fermi surface topology of iron-based superconductors with the extended s(±)s(\pm) symmetry and find that it qualitatively captures the salient features of these data.Comment: 7 pages and 5 figure

    Low-energy Mott-Hubbard excitations in LaMnO_3 probed by optical ellipsometry

    Full text link
    We present a comprehensive ellipsometric study of an untwinned, nearly stoichiometric LaMnO_3 crystal in the spectral range 1.2-6.0 eV at temperatures 20 K < T < 300 K. The complex dielectric response along the b and c axes of the Pbnm orthorhombic unit cell, \epsilon^b(\nu) and \epsilon^c(\nu), is highly anisotropic over the spectral range covered in the experiment. The difference between \epsilon^b(\nu) and \epsilon^c(\nu) increases with decreasing temperature, and the gradual evolution observed in the paramagnetic state is strongly enhanced by the onset of A-type antiferromagnetic long-range order at T_N = 139.6 K. In addition to the temperature changes in the lowest-energy gap excitation at 2 eV, there are opposite changes observed at higher energy at 4 - 5 eV, appearing on a broad-band background due to the strongly dipole-allowed O 2p -- Mn 3d transition around the charge-transfer energy 4.7 eV. Based on the observation of a pronounced spectral-weight transfer between low- and high-energy features upon magnetic ordering, they are assigned to high-spin and low-spin intersite d^4d^4 - d^3d^5 transitions by Mn electrons. The anisotropy of the lowest-energy optical band and the spectral weight shifts induced by antiferromagnetic spin correlations are quantitatively described by an effective spin-orbital superexchange model. An analysis of the multiplet structure of the intersite transitions by Mn e_g electrons allowed us to estimate the effective intra-atomic Coulomb interaction, the Hund exchange coupling, and the Jahn-Teller splitting energy between e_g orbitals in LaMnO_3. This study identifies the lowest-energy optical transition at 2 eV as an intersite d-d transition, whose energy is substantially reduced compared to that obtained from the bare intra-atomic Coulomb interaction.Comment: 10 pages, 14 figure

    Approximate Near Neighbors for General Symmetric Norms

    Full text link
    We show that every symmetric normed space admits an efficient nearest neighbor search data structure with doubly-logarithmic approximation. Specifically, for every nn, d=no(1)d = n^{o(1)}, and every dd-dimensional symmetric norm \|\cdot\|, there exists a data structure for poly(loglogn)\mathrm{poly}(\log \log n)-approximate nearest neighbor search over \|\cdot\| for nn-point datasets achieving no(1)n^{o(1)} query time and n1+o(1)n^{1+o(1)} space. The main technical ingredient of the algorithm is a low-distortion embedding of a symmetric norm into a low-dimensional iterated product of top-kk norms. We also show that our techniques cannot be extended to general norms.Comment: 27 pages, 1 figur

    Incompatible Magnetic Order in Multiferroic Hexagonal DyMnO3

    Full text link
    Magnetic order of the manganese and rare-earth lattices according to different symmetry representations is observed in multiferroic hexagonal (h-) DyMnO3_3 by optical second harmonic generation and neutron diffraction. The incompatibility reveals that the 3d-4f coupling in the h-RRMnO3_3 system (RR = Sc, Y, In, Dy - Lu) is substantially less developed than commonly expected. As a consequence, magnetoelectric coupling effects in this type of split-order parameter multiferroic that were previously assigned to a pronounced 3d-4f coupling have now to be scrutinized with respect to their origin

    Conic Multi-Task Classification

    Full text link
    Traditionally, Multi-task Learning (MTL) models optimize the average of task-related objective functions, which is an intuitive approach and which we will be referring to as Average MTL. However, a more general framework, referred to as Conic MTL, can be formulated by considering conic combinations of the objective functions instead; in this framework, Average MTL arises as a special case, when all combination coefficients equal 1. Although the advantage of Conic MTL over Average MTL has been shown experimentally in previous works, no theoretical justification has been provided to date. In this paper, we derive a generalization bound for the Conic MTL method, and demonstrate that the tightest bound is not necessarily achieved, when all combination coefficients equal 1; hence, Average MTL may not always be the optimal choice, and it is important to consider Conic MTL. As a byproduct of the generalization bound, it also theoretically explains the good experimental results of previous relevant works. Finally, we propose a new Conic MTL model, whose conic combination coefficients minimize the generalization bound, instead of choosing them heuristically as has been done in previous methods. The rationale and advantage of our model is demonstrated and verified via a series of experiments by comparing with several other methods.Comment: Accepted by European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECMLPKDD)-201

    Spin Dynamical Properties of the Layered Perovskite La1.2Sr1.8Mn2O7

    Full text link
    Inelastic neutron-scattering measurements were performed on a single crystal of the layered colossal magnetoresistance (CMR) material La1.2Sr1.8Mn2O7 (Tc ~ 120K). We found that the spin wave dispersion is almost perfectly two-dimensional with the in-plane spin stiffness constant D ~ 151meVA. The value is similar to that of similarly doped La1-xSrxMnO3 though its Tc is three times higher, indicating a large renormalization due to low dimensionality. There exist two branches due to a coupling between layers within a double-layer. The out-of-plane coupling is about 30% of the in-plane coupling though the Mn-O bond lengths are similar.Comment: 3 pages, 3 figures J. Phys. Chem. Solids in pres
    corecore