29 research outputs found

    HGF-Transgenic MSCs Can Improve the Effects of Tissue Self-Repair in a Rabbit Model of Traumatic Osteonecrosis of the Femoral Head

    Get PDF
    BACKGROUND: Osteonecrosis of the femoral head (ONFH) is generally characterized as an irreversible disease and tends to cause permanent disability. Therefore, understanding the pathogenesis and molecular mechanisms of ONFH and developing effective therapeutic methods is critical for slowing the progress of the disease. METHODOLOGY/PRINCIPAL FINDINGS: In this study, an experimental rabbit model of early stage traumatic ONFH was established, validated, and used for an evaluation of therapy. Computed tomography (CT) and magnetic resonance (MR) imaging confirmed that this model represents clinical Association Research Circulation Osseous (ARCO) phase I or II ONFH, which was also confirmed by the presence of significant tissue damage in osseous tissue and vasculature. Pathological examination detected obvious self-repair of bone tissue up to 2 weeks after trauma, as indicated by revascularization (marked by CD105) and expression of collagen type I (Col I), osteocalcin, and proliferating cell nuclear antigen. Transplantation of hepatocyte growth factor (HGF)-transgenic mesenchymal stem cells (MSCs) 1 week after trauma promoted recovery from ONFH, as evidenced by a reversed pattern of Col I expression compared with animals receiving no therapeutic treatment, as well as increased expression of vascular endothelial growth factor. CONCLUSIONS/SIGNIFICANCE: These results indicate that the transplantation of HGF-transgenic MSCs is a promising method for the treatment for ONFH and suggest that appropriate interference therapy during the tissue self-repair stage contributes to the positive outcomes. This study also provides a model for the further study of the ONFH etiology and therapeutic interventions

    Periprosthetic osteolysis after total hip replacement: molecular pathology and clinical management

    Get PDF
    Periprosthetic osteolysis is a serious complication of total hip replacement (THR) in the medium to long term. Although often asymptomatic, osteolysis can lead to prosthesis loosening and periprosthetic fracture. These complications cause significant morbidity and require complex revision surgery. Here, we review advances in our understanding of the cell and tissue response to particles produced by wear of the articular and non-articular surfaces of prostheses. We discuss the molecular and cellular regulators of osteoclast formation and bone resorptive activity, a better understanding of which may lead to pharmacological treatments for periprosthetic osteolysis. We describe the development of imaging techniques for the detection and measurement of osteolysis around THR prostheses, which enable improved clinical management of patients, provide a means of evaluating outcomes of non-surgical treatments for periprosthetic osteolysis, and assist in pre-operative planning for revision surgery. Finally, there have been advances in the materials used for bearing surfaces to minimise wear, and we review the literature regarding the performance of these new materials to date.Donald W. Howie, Susan D. Neale, David R. Haynes, Oksana T. Holubowycz, Margaret A. McGee, Lucian B. Solomon, Stuart A. Callary, Gerald J. Atkins, David M. Findla

    Numerical investigations of stress shielding in total hip prostheses

    Get PDF
    Aseptic loosening of the prosthesis is still a problem in artificial joint implants. The loosening can be caused by, among other factors, resorption of the bone surrounding the prosthesis owing to stress shielding. In order to find out the influence of the prosthesis type on post-operative stress shielding, a static finite element analysis of a femur provided with the conventional uncemented stem BICONTACT and of one with the femoral neck prosthesis SPIRON was carried out. Strain energy densities and maximal principal strain distributions were calculated and compared with the physiological situation. Here, stress shielding was demonstrated in both periprosthetic femora. To determine the areas of the stress shielding, the bone in each FE model was subdivided into three regions of interest (ROI): proximal, diaphyseal, and distal. The numerical computations show stress shielding in the proximal ROI of both periprosthetic femora. Diaphyseally, the femoral neck prosthesis SPIRON, in contrast to the conventional uncemented long-stem prosthesis BICONTACT, causes no decrease in the strain distribution and thus no stress shielding. Distally, no change in the load distribution of either periprosthetic femur could be found, compared with the physiological situation. © 2008 IMechE

    The Adaptiva custom-made stem—our reasons for not using it anymore

    No full text
    The Adaptiva custom-made stem is a hip stem anchored by fit and fill press-fit into the proximal femur and manufacture is based on computed tomography (CT) scanning. Its concept was developed for primary and revision hip arthroplasty in younger patients in our clinic. We present the advantages and the disadvantages of the system. After 66 months 98.9% of the patients are satisfied with the surgical outcome; 86% attained very good and 9% good results according to the Merle d’Aubigné score. Despite good clinical results and a high satisfaction rate, we stopped using this stem because we do not see any advantages in comparison with standard implants and feel that the price for a custom-made stem for primary hip arthroplasty is too high
    corecore