121 research outputs found

    Monte Carlo simulation of boson lattices

    Full text link
    Boson lattices are theoretically well described by the Hubbard model. The basic model and its variants can be effectively simulated using Monte Carlo techniques. We describe two newly developed approaches, the Stochastic Series Expansion (SSE) with directed loop updates and continuous--time Diffusion Monte Carlo (CTDMC). SSE is a formulation of the finite temperature partition function as a stochastic sampling over product terms. Directed loops is a general framework to implement this stochastic sampling in a non--local fashion while maintaining detailed balance. CTDMC is well suited to finding exact ground--state properties, applicable to any lattice model not suffering from the sign problem; for a lattice model the evolution of the wave function can be performed in continuous time without any time discretization error. Both the directed loop algorithm and the CTDMC are important recent advances in development of computational methods. Here we present results for a Hubbard model for anti--ferromagnetic spin--1 bosons in one dimensions, and show evidence for a dimerized ground state in the lowest Mott lobe.Comment: 3 pages, 5 figur

    Structure of metastable 2D liquid helium

    Full text link
    We present diffusion Monte Carlo (DMC) results on a new metastable, superfluid phase above the crystal ground state in two-dimensional 4He at densities > 0.065 1/A^2. The state is anisotropic with hexatic orbital order. This implies that the liquid--solid phase transition has two stages: A second order phase transition from the isotropic superfluid to the hexatic superfluid, followed by a first order transition that localizes atoms into the triangular crystal order. This metastable hexatic phase has finite condensate fraction and it provides a natural explanation for the superflow in the supersolid grain boundaries

    Layer- and bulk roton excitations of 4He in porous media

    Full text link
    We examine the energetics of bulk and layer-roton excitations of 4He in various porous medial such as aerogel, Geltech, or Vycor, in order to find out what conclusions can be drawn from experiments on the energetics about the physisorption mechanism. The energy of the layer-roton minimum depends sensitively on the substrate strength, thus providing a mechanism for a direct measurement of this quantity. On the other hand, bulk-like roton excitations are largely independent of the interaction between the medium and the helium atoms, but the dependence of their energy on the degree of filling reflects the internal structure of the matrix and can reveal features of 4He at negative pressures. While bulk-like rotons are very similar to their true bulk counterparts, the layer modes are not in close relation to two-dimensional rotons and should be regarded as a third, completely independent kind of excitation

    Excitations in confined helium

    Full text link
    We design models for helium in matrices like aerogel, Vycor or Geltech from a manifestly microscopic point of view. For that purpose, we calculate the dynamic structure function of 4He on Si substrates and between two Si walls as a function of energy, momentum transfer, and the scattering angle. The angle--averaged results are in good agreement with the neutron scattering data; the remaining differences can be attributed to the simplified model used here for the complex pore structure of the materials. A focus of the present work is the detailed identification of coexisting layer modes and bulk--like excitations, and, in the case of thick films, ripplon excitations. Involving essentially two--dimensional motion of atoms, the layer modes are sensitive to the scattering angle.Comment: Phys. Rev. B (2003, in press

    Boson and fermion dynamics in quasi-one-dimensional flat band lattices

    Full text link
    The difference between boson and fermion dynamics in quasi-one-dimensional lattices is studied with exact simulations of particle motion and by calculating the persistent current in small quantum rings. We consider three different lattices which in the tight binding model exhibit flat bands. The physical realization is considered to be an optical lattice with bosonic or fermionic atoms. The atoms are assumed to interact with a repulsive short range interaction. The different statistics of bosons and fermions causes different dynamics. Spinless fermions are easily trapped in the flat band states due to the Pauli exclusion principle, which prevents them from interacting, while boson are able to push each other out from the flat band states

    Pair Excitations and Vertex Corrections in Fermi Fluids

    Full text link
    Based on an equations--of--motion approach for time--dependent pair correlations in strongly interacting Fermi liquids, we have developed a theory for describing the excitation spectrum of these systems. Compared to the known ``correlated'' random--phase approximation (CRPA), our approach has the following properties: i) The CRPA is reproduced when pair fluctuations are neglected. ii) The first two energy--weighted sumrules are fulfilled implying a correct static structure. iii) No ad--hoc assumptions for the effective mass are needed to reproduce the experimental dispersion of the roton in 3He. iv) The density response function displays a novel form, arising from vertex corrections in the proper polarisation. Our theory is presented here with special emphasis on this latter point. We have also extended the approach to the single particle self-energy and included pair fluctuations in the same way. The theory provides a diagrammatic superset of the familiar GW approximation. It aims at a consistent calculation of single particle excitations with an accuracy that has previously only been achieved for impurities in Bose liquids.Comment: to be published in: JLTP (2007) Proc. Int. Symp. QFS2006, 1-6 Aug. 2006, Kyoto, Japa

    Control of membrane protein homeostasis by a chaperone-like glial cell adhesion molecule at multiple subcellular locations

    Get PDF
    The significance of crosstalks among constituents of plasma membrane protein clusters/complexes in cellular proteostasis and protein quality control (PQC) remains incompletely understood. Examining the glial (enriched) cell adhesion molecule (CAM), we demonstrate its chaperone-like role in the biosynthetic processing of the megalencephalic leukoencephalopathy with subcortical cyst 1 (MLC1)-heteromeric regulatory membrane protein complex, as well as the function of the GlialCAM/MLC1 signalling complex. We show that in the absence of GlialCAM, newly synthesized MLC1 molecules remain unfolded and are susceptible to polyubiquitination-dependent proteasomal degradation at the endoplasmic reticulum. At the plasma membrane, GlialCAM regulates the diffusional partitioning and endocytic dynamics of cluster members, including the ClC-2 chloride channel and MLC1. Impaired folding and/or expression of GlialCAM or MLC1 in the presence of diseases causing mutations, as well as plasma membrane tethering compromise the functional expression of the cluster, leading to compromised endo-lysosomal organellar identity. In addition, the enlarged endo-lysosomal compartments display accelerated acidification, ubiquitinated cargo-sorting and impaired endosomal recycling. Jointly, these observations indicate an essential and previously unrecognized role for CAM, where GliaCAM functions as a PQC factor for the MLC1 signalling complex biogenesis and possess a permissive role in the membrane dynamic and cargo sorting functions with implications in modulations of receptor signalling

    Many-body aspects of positron annihilation in the electron gas

    Full text link
    We investigate positron annihilation in electron liquid as a case study for many-body theory, in particular the optimized Fermi Hypernetted Chain (FHNC-EL) method. We examine several approximation schemes and show that one has to go up to the most sophisticated implementation of the theory available at the moment in order to get annihilation rates that agree reasonably well with experimental data. Even though there is basically just one number to look at, the electron-positron pair distribution function at zero distance, it is exactly this number that dictates how the full pair distribution behaves: In most cases, it falls off monotonously towards unity as the distance increases. Cases where the electron-positron pair distribution exhibits a dip are precursors to the formation of bound electron--positron pairs. The formation of electron-positron pairs is indicated by a divergence of the FHNC-EL equations, from this we can estimate the density regime where positrons must be localized. This occurs in our calculations in the range 9.4 <= r_s <=10, where r_s is the dimensionless density parameter of the electron liquid.Comment: To appear in Phys. Rev. B (2003

    Mott Transition and Spin Structures of Spin-1 Bosons in Two-Dimensional Optical Lattice at Unit Filling

    Full text link
    We study the ground state properties of spin-1 bosons in a two-dimensional optical lattice, by applying a variational Monte Carlo method to the S=1 Bose-Hubbard model on a square lattice at unit filling. A doublon-holon binding factor introduced in the trial state provides a noticeable improvement in the variational energy over the conventional Gutzwiller wave function and allows us to deal effectively with the inter-site correlations of particle densities and spins. We systematically show how spin-dependent interactions modify the superfluid-Mott insulator transitions in the S=1 Bose-Hubbard model due to the interplay between the density and spin fluctuations of bosons. Furthermore, regarding the magnetic phases in the Mott region, the calculated spin structure factor elucidates the emergence of nematic and ferromagnetic spin orders for antiferromagnetic (U2>0U_2>0) and ferromagnetic (U2<0U_2<0) couplings, respectively.Comment: 5 pages, 5 figures, to appear in Journal of the Physical Society of Japa

    Thin helium film on a glass substrate

    Full text link
    We investigate by Monte Carlo simulations the structure, energetics and superfluid properties of thin helium-four films (up to four layers) on a glass substrate, at low temperature. The first adsorbed layer is found to be solid and "inert", i.e., atoms are localized and do not participate to quantum exchanges. Additional layers are liquid, with no clear layer separation above the second one. It is found that a single helium-three impurity resides on the outmost layer, not significantly further away from the substrate than helium-four atoms on the same layer.Comment: Six figures, submitted for publication to the Journal of Low Temperature Physic
    • …
    corecore