42 research outputs found

    High abundance of a single taxon (amphipods) predicts aquatic macrophyte biodiversity in prairie wetlands

    Get PDF
    Conservation programs often aim to protect the abundance of individual species and biodiversity simultaneously. We quantified relations between amphipod densities and aquatic macrophyte (large plants and algae) diversity to test a hypothesis that biodiversity can support high abundance of a single taxonomic group. Amphipods (Gammarus lacustris and Hyalella azteca) are key forage for waterfowl and are declining in the Prairie Pothole Region of North America. We sampled a large gradient of amphipod densities (0–7050 amphipods/m3) in 49 semi-permanent wetlands, and 50% of the study wetlands had high amphipod densities (\u3e 500 amphipods/m3). Generalized linear models revealed G. lacustris and H. azteca densities increased exponentially with macrophyte diversity indices. Further, H. azteca densities were greatest at moderate levels of submersed vegetation biomass. Community analyses showed both amphipod species were positively associated with diverse macrophyte assemblages and negatively associated with high coverage of cattails (Typha spp.), a taxon that creates monotypic stands, as well as bladderwort (Utricularia spp.), a carnivorous plant. Our results indicate that amphipods could be used as an umbrella species for protecting diverse macrophyte communities in semi-permanent and permanent wetlands of North America’s Prairie Pothole Region

    Demographic Responses of Least Terns and Piping Plovers to the 2011 Missouri River Flood—A Large-Scale Case Study

    Get PDF
    2011 led to substantial changes in abundance and distribution of unvegetated sand habitat. This river system is a major component of the breeding range for interior Least terns (Sternula antillarum; “terns”) and piping plovers (Charadrius melodus; “plovers”), both of which are Federally listed ground-nesting birds that prefer open, unvegetated sand and gravel nesting substrates on sandbars and shorelines. The 2011 flood inundated essentially all tern and plover nesting habitat during 2011, but it had potential to generate post-flood habitat conditions that favored use by terns and plovers in subsequent years. We compared several tern and plover demographic parameters during the pre-flood and post-flood periods on the Garrison Reach and Lake Sakakawea, North Dakota, to determine how this event influenced these species (both species on the Garrison Reach, and plovers only on Lake Sakakawea). The principal parameters we measured (nest survival, chick survival, and breeding population) showed spatial and temporal variation typical of opportunistic species occupying highly variable habitats. There was little evidence that nest survival of least terns differed between pre- and post-flood. During 2012 when habitat was most abundant on the Garrison Reach and Lake Sakakawea, piping plover nest survival was higher than in any other year in the study, but returned to rates comparable to pre-flood years in 2013. Chick survival for terns on the Garrison Reach and plovers on Lake Sakakawea showed a similar pattern to plover nest survival, with the 2012 rate exceeding all other years of the study, and the remaining pre-flood and post-flood years being generally similar but slightly higher in post-flood years. However, plover chick survival on the Garrison Reach in 2012 was similar to pre-flood years, and increased annually thereafter to its highest rate in 2014. Although wide confidence intervals precluded firm conclusions about flood effects on breeding populations, the general pattern suggested lower populations of plovers but higher populations of least terns immediately after the flood. Despite near total absence of breeding habitat on either study area during the flood of 2011, populations of both species persisted after the flood due to their propensity to disperse and/or forgo breeding for at least a year. Tern and plover populations have similarly persisted and recovered after the flood, but their mechanisms for persistence likely differ. Data on tern dispersal is generally lacking, but they are thought to show little fidelity to their natal grounds, have a propensity to disperse potentially long distances, and routinely forgo breeding until their second year, thus a lost opportunity to breed in a given area may be easily overcome. Plovers exhibit stronger demographic ties to the general area in which they previously nested, yet they occupy much broader nesting habitat features than terns and exploit three major landforms in the Dakotas (free-flowing rivers, reservoir shorelines, and wetland shorelines). Consequently, dispersal to and from non-Missouri River habitats and potential to exploit non-traditional habitats likely sustained the Northern Great Plains population through the flood event. Terns and plovers normally occupy similar habitats on the Missouri River and both species experienced similar loss of a breeding season due to the flood. Persistence of these populations after the flood underscores the importance of understanding their unique demographic characteristics and the context within which the Missouri River operates

    Impacts of extreme environmental disturbances on piping plover survival are partially moderated by migratory connectivity

    Get PDF
    Effective conservation for listed migratory species requires an understanding of how drivers of population decline vary spatially and temporally, as well as knowledge of range-wide connectivity between breeding and nonbreeding areas. Environmental conditions distant from breeding areas can have lasting effects on the demography of migratory species, yet these consequences are often the least understood. Our objectives were to 1) evaluate associations between survival and extreme environmental disturbances at nonbreeding areas, including hurricanes, harmful algal blooms, and oil spills, and 2) estimate migratory connectivity between breeding and nonbreeding areas of midcontinental piping plovers (Charadrius melodus). We used capture and resighting data from 5067 individuals collected between 2002 and 2019 from breeding areas across the midcontinent, and nonbreeding areas throughout the Gulf of Mexico and southern Atlantic coasts of North America. We developed a hidden Markov multistate model to estimate seasonal survival and account for unobservable geographic locations. Hurricanes and harmful algal blooms were negatively associated with nonbreeding season survival, but we did not detect a similarly negative relationship with oil spills. Our results indicated that individuals from separate breeding areas mixed across nonbreeding areas with low migratory connectivity. Mixing among individuals in the nonbreeding season may provide a buffering effect against impacts of extreme events on any one breeding region. Our results suggest that understanding migratory connectivity and linking seasonal threats to population dynamics can better inform conservation strategies for migratory shorebirds

    Demographic Responses of Least Terns and Piping Plovers to the 2011 Missouri River Flood—A Large-Scale Case Study

    Get PDF
    2011 led to substantial changes in abundance and distribution of unvegetated sand habitat. This river system is a major component of the breeding range for interior Least terns (Sternula antillarum; “terns”) and piping plovers (Charadrius melodus; “plovers”), both of which are Federally listed ground-nesting birds that prefer open, unvegetated sand and gravel nesting substrates on sandbars and shorelines. The 2011 flood inundated essentially all tern and plover nesting habitat during 2011, but it had potential to generate post-flood habitat conditions that favored use by terns and plovers in subsequent years. We compared several tern and plover demographic parameters during the pre-flood and post-flood periods on the Garrison Reach and Lake Sakakawea, North Dakota, to determine how this event influenced these species (both species on the Garrison Reach, and plovers only on Lake Sakakawea). The principal parameters we measured (nest survival, chick survival, and breeding population) showed spatial and temporal variation typical of opportunistic species occupying highly variable habitats. There was little evidence that nest survival of least terns differed between pre- and post-flood. During 2012 when habitat was most abundant on the Garrison Reach and Lake Sakakawea, piping plover nest survival was higher than in any other year in the study, but returned to rates comparable to pre-flood years in 2013. Chick survival for terns on the Garrison Reach and plovers on Lake Sakakawea showed a similar pattern to plover nest survival, with the 2012 rate exceeding all other years of the study, and the remaining pre-flood and post-flood years being generally similar but slightly higher in post-flood years. However, plover chick survival on the Garrison Reach in 2012 was similar to pre-flood years, and increased annually thereafter to its highest rate in 2014. Although wide confidence intervals precluded firm conclusions about flood effects on breeding populations, the general pattern suggested lower populations of plovers but higher populations of least terns immediately after the flood. Despite near total absence of breeding habitat on either study area during the flood of 2011, populations of both species persisted after the flood due to their propensity to disperse and/or forgo breeding for at least a year. Tern and plover populations have similarly persisted and recovered after the flood, but their mechanisms for persistence likely differ. Data on tern dispersal is generally lacking, but they are thought to show little fidelity to their natal grounds, have a propensity to disperse potentially long distances, and routinely forgo breeding until their second year, thus a lost opportunity to breed in a given area may be easily overcome. Plovers exhibit stronger demographic ties to the general area in which they previously nested, yet they occupy much broader nesting habitat features than terns and exploit three major landforms in the Dakotas (free-flowing rivers, reservoir shorelines, and wetland shorelines). Consequently, dispersal to and from non-Missouri River habitats and potential to exploit non-traditional habitats likely sustained the Northern Great Plains population through the flood event. Terns and plovers normally occupy similar habitats on the Missouri River and both species experienced similar loss of a breeding season due to the flood. Persistence of these populations after the flood underscores the importance of understanding their unique demographic characteristics and the context within which the Missouri River operates

    Asymmetric benefits of a heterospecific breeding association vary with habitat, conspecific abundance and breeding stage

    Get PDF
    Heterospecific breeding associations may benefit individuals by mitigating predation risk but may also create costs if they increase competition for resources or are more easily detectable by predators. Our understanding of the interactions among hetero- and conspecifics is often lacking in mixed species colonies. Here, we test how the presence of hetero- and conspecifics influence nest and chick survival for two listed (under the U.S. Endangered Species Act) migratory species breeding on the Missouri River, USA. We monitored 2507 piping plover Charadrius melodus nests and 3245 chicks as well as 1060 least tern Sternula antillarum nests and 1374 chicks on Lake Sakakawea, the Garrison River Reach and the Gavins Point Reach for varying years between 2007 and 2016. Piping plover nest and chick survival improved with the presence and abundance of least terns, but least terns only benefited from piping plover presence for certain study areas and breeding stages. Piping plover nest survival was also improved by the presence and abundance of conspecifics on the Garrison River Reach and was negatively influenced by conspecific presence on Lake Sakakawea. Least tern chick survival improved with the presence of other least terns only on the Gavins Point Reach. Ultimately, the heterospecific breeding association between plovers and terns is mutualistic but asymmetric and is moderated by habitat, abundance of conspecifics and breeding stage. Our results highlight that spatiotemporal variation in the interactions among individuals breeding in groups precludes simple generalizations and suggests that management focused on one species may restrict benefits to that focal species if nest site requirements for heterospecifics are not also included. Includes Supplementary Appendi

    Wetland occupancy by duck broods in cropland-dominated landscapes of the United States Prairie Pothole Region

    Get PDF
    The Prairie Pothole Region (PPR) is globally important for breeding waterfowl but has been altered via wetland drainage and grassland conversion to accommodate agricultural land use. Thus, understanding the ecology of waterfowl in these highly modified landscapes is essential for their conservation. Brood occurrence is the cumulative outcome of key life-history events including pair formation and territory establishment, nest success, and early brood survival. We applied new technological advances in brood surveying methods to understand brood use of wetlands and how land use and wetland-specific factors influenced brood use of 413 wetlands in crop-dominated landscapes in the PPR of Iowa, Minnesota, North Dakota, and South Dakota, USA, during summers of 2018–2020. Dynamic occupancy models combining information from 2 visits throughout the year revealed no difference among the 4 states or between private and public lands, resulting in a region-wide annual wetland occupancy estimate of 0.41 (95% credible interval [CrI] = 0.26, 0.58). We assessed aquatic invertebrate forage availability, wetland and upland vegetation communities, and various water chemistry metrics in a subset (n = 225) of these wetlands to evaluate how landscape and wetland-specific factors influenced occupancy. The amount of grassland surrounding wetlands was the only variable to influence occupancy at a landscape scale, while wetland size, invertebrates, fish, and vegetation communities influenced occupancy at finer scales. Closer scrutiny of wetland area revealed occupancy was greater in small wetlands after controlling for total wetland area. Our results indicate the greatest constraint on brood occupancy across crop-dominated landscapes of the PPR in the United States was the occurrence of semipermanent wetlands suitable for brood rearing. Other factors, such as wetland vegetation or surrounding land use, had minor intervening influences on duck brood use and ducks were distributed invariant of wetland ownership or broad spatial processes occurring among states. These results demonstrated wetland conservation and restoration strategies are likely to yield gains in annual duck broods across this vast, altered, and highly modified landscape.This article is published as Mitchell, Blake J., Catrina V. Terry, Kevin M. Ringelman, Kaylan M. Kemink, Michael J. Anteau, and Adam K. Janke. "Wetland occupancy by duck broods in cropland‐dominated landscapes of the United States Prairie Pothole Region." The Journal of Wildlife Management (2022): e22347. doi:10.1002/jwmg.22347.Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted

    Mortality risk among workers with exposure to dioxins

    No full text
    Background In several studies, dioxin exposure has been associated with increased risk from several causes of death. Aims To compare the mortality experience of workers exposed to dioxins during trichlorophenol (TCP) and pentachlorophenol (PCP) production to that of the general population and to examine mortality risk by estimated exposure levels. Methods A retrospective cohort study which followed up workers' vital status from 1940 to 2011, with serum surveys to support estimation of historical dioxin exposure levels. Results Among the 2192 study subjects, there were nine deaths in TCP workers from acute non-lymphatic leukaemia [standardized mortality ratio (SMR) = 2.88, 95% confidence interval (CI) 1.32- 5.47], four mesothelioma deaths (SMR = 5.12, 95% CI 1.39-13.10) and four soft tissue sarcoma (STS) deaths (SMR = 3.08, 95% CI 0.84-7.87). In PCP workers, there were eight deaths from non-Hodgkin's lymphoma (SMR = 1.92, 95% CI 0.83-3.79), 150 from ischaemic heart disease (SMR = 1.20, 95% CI 1.01-7.89) and five from stomach ulcers (SMR = 3.38, 95% CI 1.10-7.89). There were no trends of increased mortality with increased dioxin exposure except for STS and 2,3,7,8-tetrachlorodibenzo-p-dioxin levels. This finding for STS should be interpreted with caution due to the small number of deaths and the uncertainty in diagnosis and nosology. Conclusions While some causes of death were greater than expected, this study provides little evidence of increased risk when dioxin exposures are considered

    Conspecific density and habitat quality affect breeding habitat selection: Support for the social attraction hypothesis

    No full text
    Abstract Breeding habitat selection is a critical component of the annual cycle because of its effect on fitness. Multiple theories of habitat selection can be differentiated by their responses to the quantity of habitat, conspecific density, and habitat quality. Here, we use network analysis to understand the characteristics of fine‐scale breeding habitat selected by both immigrant and returning adult piping plovers (Charadrius melodus) to test five hypotheses of habitat selection. Between 2014 and 2019, we recorded 2034 uniquely marked adults breeding at 326 breeding locations with 1240 successive breeding events. Among adults, immigration events (i.e., individuals that moved to a new breeding location) were detected as often as fidelity to the same breeding location. We found support for the social attraction hypothesis for both immigrants and returners, indicating that adult plovers use social cues for settlement decisions. Adult plovers selected habitats with intermediate levels of conspecific density and high habitat quality, as assessed by con‐ and heterospecific nest survival, with no effect from the amount of available habitat. We also simulated the loss of breeding habitat and identified highly connected breeding locations, which occurred mostly on the riverine habitat type, which have important implications for habitat conservation for this listed species. Our results highlight the role of conspecifics at identifying high‐quality breeding habitat regardless of whether individuals return to the same breeding site or immigrate to new areas
    corecore