2 research outputs found
INTERNATIONAL JOURNAL OF PHARMACY & LIFE SCIENCES Screening of potential efficacy of dietary ginger on ethanol induced oxidative stress in rat cardiac tissue: A study on changes in basic metabolic profiles
Abstract The present study was premeditated to examine the possible mechanisms where by ginger (Zingiber officinale) could protect cardiac tissue from alcohol toxicity in rats. The carbohydrate metabolic profiles like total carbohydrates, pyruvate, total proteins, free amino acids and lactate levels were measured in heart tissue. The total carbohydrates, pyruvate, and total proteins were significant declined while free amino acids, lactate levels were significant increased in alcohol intoxicated rats. Whereas with ginger (200 mg/kg body weight) treatment shown significant increase in the total carbohydrates, total proteins and pyruvate levels, whereas free amino acids, lactate levels were significant drop in the cardiac tissues. From the present study, we conclude that ginger protects the heart tissue from alcohol toxicity in rats, this may be due to the presence of many bioactive compounds in ginger
Toxicity on Dengue Mosquito Vectors Through Myristica fragrans-Synthesized Zinc Oxide Nanorods, and Their Cytotoxic Effects on Liver Cancer Cells (HepG2)
Dengue is an arbovirus mainly vectored by Aedes mosquitoes. Its prevention and control depends to effective vector control measures. Cancer causes millions of death every year. Most of the anticancer drugs have high toxicity and low specificity of action, leading to systemic toxicity and severe side effects. Thus, the development of effective tools is a priority. We fabricated zinc oxide nanoparticles using the Myristica fragrans extract as a reducing and stabilizing agent. Nanoparticles were studied using UV–vis spectrophotometry, Fourier transform infrared spectroscopy, X-ray diffraction, zeta potential, dynamic light scattering, energy dispersive X-ray analysis, field emission scanning electron microscopy and transmission electron microscopy. ZnO nanorods were highly effective against A. aegypti young instars, with LC50 ranging from 3.44 (larva I) to 14.63 ppm (pupa). Nanorods showed adult LC50 of 15.004 ppm. ZnO nanorods exhibited dose-dependent cytotoxicity against human hepato-cancer cells (HepG2). After 48 and 24 h of incubation, the IC50 were 20 and 22 μg/ml, respectively. Nanorods triggered the induction of apoptosis. Overall, this study highlights that the possibility to employ M. fragrans-synthesized ZnO nanorods in mosquito control, as well as in the development of novel chemotherapeutic agents with reduced systemic toxicity