1,666 research outputs found

    Search for lepton-flavor violating decays of the Higgs boson in the μτ and eτ final states in proton-proton collisions at s =13 TeV

    Get PDF
    A search is presented for lepton-flavor violating decays of the Higgs boson to μτ and eτ. The dataset corresponds to an integrated luminosity of 137 fb-1 collected at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV. No significant excess has been found, and the results are interpreted in terms of upper limits on lepton-flavor violating branching fractions of the Higgs boson. The observed (expected) upper limits on the branching fractions are, respectively, B(H→μτ)<0.15(0.15)% and B(H→eτ)<0.22(0.16)% at 95% confidence level.CMS Collaboration (ukupan broj autora: 2341

    Precision luminosity measurement in proton–proton collisions at √s=13TeV in 2015 and 2016 at CMS

    Get PDF
    The measurement of the luminosity recorded by the CMS detector installed at LHC interaction point 5, using proton–proton collisions at s=13TeV in 2015 and 2016, is reported. The absolute luminosity scale is measured for individual bunch crossings using beam-separation scans (the van der Meer method), with a relative precision of 1.3 and 1.0% in 2015 and 2016, respectively. The dominant sources of uncertainty are related to residual differences between the measured beam positions and the ones provided by the operational settings of the LHC magnets, the factorizability of the proton bunch spatial density functions in the coordinates transverse to the beam direction, and the modeling of the effect of electromagnetic interactions among protons in the colliding bunches. When applying the van der Meer calibration to the entire run periods, the integrated luminosities when CMS was fully operational are 2.27 and 36.3 fb-1 in 2015 and 2016, with a relative precision of 1.6 and 1.2%, respectively. These are among the most precise luminosity measurements at bunched-beam hadron colliders

    Search for W′ bosons decaying to a top and a bottom quark at s=13TeV in the hadronic final state

    Get PDF
    A search is performed for W′ bosons decaying to a top and a bottom quark in the all-hadronic final state, in proton-proton collisions at a center-of-mass energy of 13TeV. The analyzed data were collected by the CMS experiment between 2016 and 2018 and correspond to an integrated luminosity of 137fb−1. Deep neural network algorithms are used to identify the jet initiated by the bottom quark and the jet containing the decay products of the top quark when the W boson from the top quark decays hadronically. No excess above the estimated standard model background is observed. Upper limits on the production cross sections of W′ bosons decaying to a top and a bottom quark are set. Both left- and right-handed W′ bosons with masses below 3.4TeV are excluded at 95% confidence level, and the most stringent limits to date on W′ bosons decaying to a top and a bottom quark in the all-hadronic final state are obtained.CMS Collaboration (ukupan broj autora: 2333

    Measurement of the Wγ Production Cross Section in Proton-Proton Collisions at s=13 TeV and Constraints on Effective Field Theory Coefficients

    Get PDF
    A fiducial cross section for Wγ production in proton-proton collisions is measured at a center-of-mass energy of 13 TeV in 137 fb−1 of data collected using the CMS detector at the LHC. The W→eν and μν decay modes are used in a maximum-likelihood fit to the lepton-photon invariant mass distribution to extract the combined cross section. The measured cross section is compared with theoretical expectations at next-to-leading order in quantum chromodynamics. In addition, 95% confidence level intervals are reported for anomalous triple-gauge couplings within the framework of effective field theory.CMS Collaboration (ukupan broj autora: 2321

    Search for top squarks in final states with two top quarks and several light-flavor jets in proton-proton collisions at s =13 TeV

    Get PDF
    Many new physics models, including versions of supersymmetry characterized by R-parity violation (RPV), compressed mass spectra, long decay chains, or additional hidden sectors, predict the production of events with top quarks, low missing transverse momentum, and many additional quarks or gluons. The results of a search for new physics in events with two top quarks and additional jets are reported. The search is performed using events with at least seven jets and exactly one electron or muon. No requirement on missing transverse momentum is imposed. The study is based on a sample of proton-proton collisions at s=13TeV corresponding to 137 fb−1 of integrated luminosity collected with the CMS detector at the LHC in 2016–2018. The data are used to determine best fit values and upper limits on the cross section for pair production of top squarks in scenarios of RPV and stealth supersymmetry. Top squark masses up to 670 (870) GeV are excluded at 95% confidence level for the RPV (stealth) scenario, and the maximum observed local signal significance is 2.8 standard deviations for the RPV scenario with top squark mass of 400 GeV.CMS Collaboration (ukupan broj autora: 2324

    Search for top squark production in fully hadronic final states in proton-proton collisions at s=13 TeV

    Get PDF
    A search for production of the supersymmetric partners of the top quark, top squarks, is presented. The search is based on proton-proton collision events containing multiple jets, no leptons, and large transverse momentum imbalance. The data were collected with the CMS detector at the CERN LHC at a center-of-mass energy of 13 TeV, and correspond to an integrated luminosity of 137 fb−1. The targeted signal production scenarios are direct and gluino-mediated top squark production, including scenarios in which the top squark and neutralino masses are nearly degenerate. The search utilizes novel algorithms based on deep neural networks that identify hadronically decaying top quarks and W bosons, which are expected in many of the targeted signal models. No statistically significant excess of events is observed relative to the expectation from the standard model, and limits on the top squark production cross section are obtained in the context of simplified supersymmetric models for various production and decay modes. Exclusion limits as high as 1310 GeV are established at the 95% confidence level on the mass of the top squark for direct top squark production models, and as high as 2260 GeV on the mass of the gluino for gluino-mediated top squark production models. These results represent a significant improvement over the results of previous searches for supersymmetry by CMS in the same final state.CMS Collaboration (ukupan broj autora: 2324

    Observation of a New Excited Beauty Strange Baryon Decaying to Ξb−π+π−

    Get PDF
    The Ξb−π+π− invariant mass spectrum is investigated with an event sample of proton-proton collisions at s=13 TeV, collected by the CMS experiment at the LHC in 2016–2018 and corresponding to an integrated luminosity of 140 fb−1. The ground state Ξb− is reconstructed via its decays to J/ψΞ− and J/ψΛK−. A narrow resonance, labeled Ξb(6100)−, is observed at a Ξb−π+π− invariant mass of 6100.3±0.2(stat)±0.1(syst)±0.6(Ξb−) MeV, where the last uncertainty reflects the precision of the Ξb− baryon mass. The upper limit on the Ξb(6100)− natural width is determined to be 1.9 MeV at 95% confidence level. The low Ξb(6100)− signal yield observed in data does not allow a measurement of the quantum numbers of the new state. However, following analogies with the established excited Ξc baryon states, the new Ξb(6100)− resonance and its decay sequence are consistent with the orbitally excited Ξb− baryon, with spin and parity quantum numbers JP=3/2−.CMS Collaboration (ukupan broj autora: 2360

    Search for pair production of vector-like quarks in leptonic final states in proton-proton collisions at s s \sqrt{s} = 13 TeV

    Get PDF
    Abstract A search is presented for vector-like T and B quark-antiquark pairs produced in proton-proton collisions at a center-of-mass energy of 13 TeV. Data were collected by the CMS experiment at the CERN LHC in 2016–2018, with an integrated luminosity of 138 fb−1. Events are separated into single-lepton, same-sign charge dilepton, and multi-lepton channels. In the analysis of the single-lepton channel a multilayer neural network and jet identification techniques are employed to select signal events, while the same-sign dilepton and multilepton channels rely on the high-energy signature of the signal to distinguish it from standard model backgrounds. The data are consistent with standard model background predictions, and the production of vector-like quark pairs is excluded at 95% confidence level for T quark masses up to 1.54 TeV and B quark masses up to 1.56 TeV, depending on the branching fractions assumed, with maximal sensitivity to decay modes that include multiple top quarks. The limits obtained in this search are the strongest limits to date for T T ¯ TT \textrm{T}\overline{\textrm{T}} production, excluding masses below 1.48 TeV for all decays to third generation quarks, and are the strongest limits to date for B B ¯ BB \textrm{B}\overline{\textrm{B}} production with B quark decays to tW
    corecore