59 research outputs found

    Density functional theory based screening of ternary alkali-transition metal borohydrides: A computational material design project

    Get PDF

    Density functional theory based screening of ternary alkali-transition metal borohydrides: A computational material design project

    Get PDF
    The dissociation of molecules, even the most simple hydrogen molecule, cannot be described accurately within density functional theory because none of the currently available functionals accounts for strong on-site correlation. This problem led to a discussion of properties that the local Kohn-Sham potential has to satisfy in order to correctly describe strongly correlated systems. We derive an analytic expression for the nontrivial form of the Kohn-Sham potential in between the two fragments for the dissociation of a single bond. We show that the numerical calculations for a one-dimensional two-electron model system indeed approach and reach this limit. It is shown that the functional form of the potential is universal, i.e., independent of the details of the two fragments.We acknowledge funding by the Spanish MEC (Grant No. FIS2007-65702-C02-01), “Grupos Consolidados UPV/EHU del Gobierno Vasco” (Grant No. IT-319-07), and the European Community through e-I3 ETSF project (Grant Agreement No. 211956).Peer reviewe

    Quantifying ChIP-seq data:A spiking method providing an internal reference for sample-to-sample normalization

    Get PDF
    Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) experiments are widely used to determine, within entire genomes, the occupancy sites of any protein of interest, including, for example, transcription factors, RNA polymerases, or histones with or without various modifications. In addition to allowing the determination of occupancy sites within one cell type and under one condition, this method allows, in principle, the establishment and comparison of occupancy maps in various cell types, tissues, and conditions. Such comparisons require, however, that samples be normalized. Widely used normalization methods that include a quantile normalization step perform well when factor occupancy varies at a subset of sites, but may miss uniform genome-wide increases or decreases in site occupancy. We describe a spike adjustment procedure (SAP) that, unlike commonly used normalization methods intervening at the analysis stage, entails an experimental step prior to immunoprecipitation. A constant, low amount from a single batch of chromatin of a foreign genome is added to the experimental chromatin. This "spike" chromatin then serves as an internal control to which the experimental signals can be adjusted. We show that the method improves similarity between replicates and reveals biological differences including global and largely uniform changes

    Resource Allocation in Spectrum Underlay Cognitive Radio Networks

    No full text

    Distributed Discrete Power Control In Cellular PCS

    No full text
    Transmitter power control has proven to be an efficient method to control cochannel interference in cellular PCS, and to increase bandwidth utilization. Power control can also improve channel quality, lower the power consumption, and facilitate network management functions such as mobile removals, hand-off and admission control. Most of the previous studies have assumed that the transmitter power level is controlled in a continuous domain, whereas in digitally power controlled systems, power levels are discrete, In this paper we study the transmitter power control problem using only a finite set of discrete power levels. The optimal discrete power vector is characterized, and a Distributed Discrete Power Control (DDPC) algorithm which converges to it, is presented. The impact of the power level grid on the outage probability is also investigated. A microcellular case study is used to evaluate the outage probabilities of the algorithms

    Power control with coder-estimator sequences

    No full text
    corecore