42 research outputs found

    Cell Hierarchy and Lineage Commitment in the Bovine Mammary Gland

    Get PDF
    The bovine mammary gland is a favorable organ for studying mammary cell hierarchy due to its robust milk-production capabilities that reflect the adaptation of its cell populations to extensive expansion and differentiation. It also shares basic characteristics with the human breast, and identification of its cell composition may broaden our understanding of the diversity in cell hierarchy among mammals. Here, Lin− epithelial cells were sorted according to expression of CD24 and CD49f into four populations: CD24medCD49fpos (putative stem cells, puStm), CD24negCD49fpos (Basal), CD24highCD49fneg (putative progenitors, puPgt) and CD24medCD49fneg (luminal, Lum). These populations maintained differential gene expression of lineage markers and markers of stem cells and luminal progenitors. Of note was the high expression of Stat5a in the puPgt cells, and of Notch1, Delta1, Jagged1 and Hey1 in the puStm and Basal populations. Cultured puStm and Basal cells formed lineage-restricted basal or luminal clones and after re-sorting, colonies that preserved a duct-like alignment of epithelial layers. In contrast, puPgt and Lum cells generated only luminal clones and unorganized colonies. Under non-adherent culture conditions, the puPgt and puStm populations generated significantly more floating colonies. The increase in cell number during culture provides a measure of propagation potential, which was highest for the puStm cells. Taken together, these analyses position puStm cells at the top of the cell hierarchy and denote the presence of both bi-potent and luminally restricted progenitors. In addition, a population of differentiated luminal cells was marked. Finally, combining ALDH activity with cell-surface marker analyses defined a small subpopulation that is potentially stem cell- enriched

    Emamectin Benzoate-Induced Hepatotoxicity in Rats with Special Reference to Protective Potential of Nigella sativa Oil

    No full text
    This study was designed to explore the hepatotoxicity of emamectin in male rats and the possible effect of Nigella sativa oil (NSO) in ameliorating this. Twenty-eight male rats were used in this study. They were divided into four groups, Control group: rats orally administered distilled water; NSO group: rats administered NSO orally; EMB group: rats administered emamectin benzoate orally; and EMB+NSO group: rats orally co-administered NSO with EMB, with the administrations being performed every other day for 6 weeks. Body weight was measured, liver alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) activities were determined, and total protein and albumin levels were recorded. Histopathological examination of the liver was also performed, along with caspase-3 and TNF-α immunostaining of liver tissue. EMB treatment resulted in decreased body weight, while the co-administration of NSO modulated the EMB-induced alterations in body weight. There were also increases in the activities of serum ALT, AST, and ALP and decreases in total protein and albumin levels in the EMB group. Co-treatment with NSO significantly reduced serum ALT, AST, and ALP and improved total protein and albumin levels. Histopathological examination of the liver in the EMB group revealed the presence of different histopathological alterations that were improved by the co-administration of NSO. Immunostaining of caspase-3 and TNF-α in the liver revealed strong expression in the EMB-treated group. Meanwhile, the EMB+NSO group showed weak positivity for immunoreactive cells.</jats:p

    Nonlinear dynamical wave structures to the Date–Jimbo–Kashiwara–Miwa equation and its modulation instability analysis

    Full text link
    A particular attention is paid to the nonlinear dynamical exact wave solutions to the (2 + 1)-dimensional Date–Jimbo–Kashiwara–Miwa equation (DJKME). A variety of solutions are extracted in different shapes like dark, singular, dark-singular by implementing [Formula: see text]-expansion function method and modified direct algebraic method. In addition, we also secure singular periodic and plane wave solutions with arbitrary parameters. We also discussed the modulation instability analysis of the governing model. The constraint conditions for the validity of existence of solutions are also reported. Moreover, three-dimensional and two-dimensional, and their corresponding contour graphs are sketched for a better understanding of the derived solutions with the values of arbitrary parameters. </jats:p

    The Anti-Inflammatory, Anti-Apoptotic, and Antioxidant Effects of a Pomegranate-Peel Extract against Acrylamide-Induced Hepatotoxicity in Rats

    No full text
    The Acrylamide is a toxic compound generated under oxidative stress arising from intracellular ROS production and induced toxicity. It is frequently used in industry and generated through the heating of tobacco and foods high in carbohydrates. The exact mechanism of its toxicity is still unclear. In this study, an extract of the peels of pomegranate (Punica granatum L.), a nutritious and visually appealing fruit with a diverse bioactive profile, was examined for its potential anti-apoptotic, antioxidant, and anti-inflammatory effects. A total of 40 adult male Wistar rats were allocated into four groups of 10 rats each: Group 1 was a negative-control group (CNT) and received normal saline; Group 2 was a positive-control acrylamide group and received acrylamide orally at a dose of 20 mg/kg/bw; in Group 3, the rats were supplemented with pomegranate-peel extract (P.P; 150 mg/kg/bw) orally on a daily basis for 3 weeks, administered simultaneously with the acrylamide treatment described for Group 2; Group 4 was a protective group, and the animals received the pomegranate-peel extract and acrylamide as stated for Groups 2 and 3, with the pomegranate-peel extract (P.P. extract) administered 1 week earlier than the acrylamide. The results indicate that acrylamide exposure increased the serum levels of AST, ALT, creatinine, interleukin-1 beta, and interleukin-6 in an extraordinary manner. In addition, it increased the lipid peroxidation marker malondialdehyde (MDA) and simultaneously weakened antioxidant biomarker activities (SOD, GSH, and catalase) and reduced the levels of interleukin-10. The pomegranate-peel extract was shown to reduce the inflammatory blood markers of interleukin-1 beta and IL-6. Glutathione peroxidase, superoxide dismutase, catalase, and interleukin-10 were all significantly elevated in comparison to the acrylamide-treatment group as a result of the significant reduction in MDA levels induced by the P.P extract. In addition, the pomegranate-peel extract normalized the cyclooxygenase-2 (COX2), transforming growth factor-beta 1 (TGF-β1), and caspase-3 levels, with a significant upregulation of the mRNA expression of heme oxygenase-1 (HO-1), nuclear factor erythroid 2 (Nrf2), and Bcl-2. Therefore, these data reveal that pomegranate peel has anti-inflammatory, antiapoptotic, free-radical-scavenging, and powerful antioxidant activity that protects against acrylamide toxicity.</jats:p

    Transcriptome Analysis of Testis from HFD-Induced Obese Rats (Rattus norvigicus) Indicated Predisposition for Male Infertility

    No full text
    Obesity is a worldwide life-threatening metabolic disorder, associated with various chronic diseases, including male infertility. Obesity was induced by high fat diet (HFD), and testis RNA was used for the transcriptome analysis using RNAseq via Illumina NovaSeq 6000 System and NovaSeq 6000 Kit. Gene expression level was estimated as FPKM (Fragments Per Kilobase of transcript per Million mapped reads). Differential expressed genes (DEGs) were annotated against gene ontology (GO) and KEGG databases. More than 63.66 million reads per sample were performed with 100 bp cutoff and 6 Gb sequencing depth. Results of this study revealed that 267 GO terms (245 biological processes (BP), 14 cellular components (CC), eight molecular functions (MF)), and 89 KEGG pathways were significantly enriched. Moreover, total numbers of 136 genes were differentially expressed (107 upregulated, 29 downregulated) with |FC| ≥ 2 and bh adjusted &lt;0.05. Interesting DEGs were detected, including obesity and lipid metabolism-related genes, immune response-related genes, cytochrome P450 genes, including aromatase were upregulated, whereas genes related to male fertility and fertilization, cell adhesion, and olfactory receptors were downregulated. The combined expression pattern of the DEGs in obese animals indicated an increase in cholesterol metabolism. Furthermore, high aromatase activity enhances the testosterone turnover into estradiol and lowers the testosterone/estradiol (T/E) ratio, which ultimately reduces fertility. In addition, downregulation of cadherens junction components genes leads to the pre-mature release of sperm from Sertoli cells resulting in the reduction of fertility. Moreover, the downregulation of olfactory receptor genes reduces the chemotaxis capacity of sperms in tracking the oocyte for fertilization, which reduces male fertility. Furthermore, various obesity molecular markers were detected in our transcriptome. The results of this study will enhance our understanding of the molecular network of obesity development, development of obesity novel molecular diagnosis markers, molecular bases of obesity-induced infertility, and the development of anti-obesity drugs.</jats:p

    Transcriptome Analysis of Testis from HFD-Induced Obese Rats (Rattus norvigicus) Indicated Predisposition for Male Infertility

    No full text
    Obesity is a worldwide life-threatening metabolic disorder, associated with various chronic diseases, including male infertility. Obesity was induced by high fat diet (HFD), and testis RNA was used for the transcriptome analysis using RNAseq via Illumina NovaSeq 6000 System and NovaSeq 6000 Kit. Gene expression level was estimated as FPKM (Fragments Per Kilobase of transcript per Million mapped reads). Differential expressed genes (DEGs) were annotated against gene ontology (GO) and KEGG databases. More than 63.66 million reads per sample were performed with 100 bp cutoff and 6 Gb sequencing depth. Results of this study revealed that 267 GO terms (245 biological processes (BP), 14 cellular components (CC), eight molecular functions (MF)), and 89 KEGG pathways were significantly enriched. Moreover, total numbers of 136 genes were differentially expressed (107 upregulated, 29 downregulated) with |FC| &ge; 2 and bh adjusted &lt;0.05. Interesting DEGs were detected, including obesity and lipid metabolism-related genes, immune response-related genes, cytochrome P450 genes, including aromatase were upregulated, whereas genes related to male fertility and fertilization, cell adhesion, and olfactory receptors were downregulated. The combined expression pattern of the DEGs in obese animals indicated an increase in cholesterol metabolism. Furthermore, high aromatase activity enhances the testosterone turnover into estradiol and lowers the testosterone/estradiol (T/E) ratio, which ultimately reduces fertility. In addition, downregulation of cadherens junction components genes leads to the pre-mature release of sperm from Sertoli cells resulting in the reduction of fertility. Moreover, the downregulation of olfactory receptor genes reduces the chemotaxis capacity of sperms in tracking the oocyte for fertilization, which reduces male fertility. Furthermore, various obesity molecular markers were detected in our transcriptome. The results of this study will enhance our understanding of the molecular network of obesity development, development of obesity novel molecular diagnosis markers, molecular bases of obesity-induced infertility, and the development of anti-obesity drugs

    The Anti-Inflammatory, Anti-Apoptotic, and Antioxidant Effects of a Pomegranate-Peel Extract against Acrylamide-Induced Hepatotoxicity in Rats

    No full text
    The Acrylamide is a toxic compound generated under oxidative stress arising from intracellular ROS production and induced toxicity. It is frequently used in industry and generated through the heating of tobacco and foods high in carbohydrates. The exact mechanism of its toxicity is still unclear. In this study, an extract of the peels of pomegranate (Punica granatum L.), a nutritious and visually appealing fruit with a diverse bioactive profile, was examined for its potential anti-apoptotic, antioxidant, and anti-inflammatory effects. A total of 40 adult male Wistar rats were allocated into four groups of 10 rats each: Group 1 was a negative-control group (CNT) and received normal saline; Group 2 was a positive-control acrylamide group and received acrylamide orally at a dose of 20 mg/kg/bw; in Group 3, the rats were supplemented with pomegranate-peel extract (P.P; 150 mg/kg/bw) orally on a daily basis for 3 weeks, administered simultaneously with the acrylamide treatment described for Group 2; Group 4 was a protective group, and the animals received the pomegranate-peel extract and acrylamide as stated for Groups 2 and 3, with the pomegranate-peel extract (P.P. extract) administered 1 week earlier than the acrylamide. The results indicate that acrylamide exposure increased the serum levels of AST, ALT, creatinine, interleukin-1 beta, and interleukin-6 in an extraordinary manner. In addition, it increased the lipid peroxidation marker malondialdehyde (MDA) and simultaneously weakened antioxidant biomarker activities (SOD, GSH, and catalase) and reduced the levels of interleukin-10. The pomegranate-peel extract was shown to reduce the inflammatory blood markers of interleukin-1 beta and IL-6. Glutathione peroxidase, superoxide dismutase, catalase, and interleukin-10 were all significantly elevated in comparison to the acrylamide-treatment group as a result of the significant reduction in MDA levels induced by the P.P extract. In addition, the pomegranate-peel extract normalized the cyclooxygenase-2 (COX2), transforming growth factor-beta 1 (TGF-β1), and caspase-3 levels, with a significant upregulation of the mRNA expression of heme oxygenase-1 (HO-1), nuclear factor erythroid 2 (Nrf2), and Bcl-2. Therefore, these data reveal that pomegranate peel has anti-inflammatory, antiapoptotic, free-radical-scavenging, and powerful antioxidant activity that protects against acrylamide toxicity
    corecore