327 research outputs found

    Rare germline variants in DNA repair genes and the angiogenesis pathway predispose prostate cancer patients to develop metastatic disease

    Get PDF
    Background Prostate cancer (PrCa) demonstrates a heterogeneous clinical presentation ranging from largely indolent to lethal. We sought to identify a signature of rare inherited variants that distinguishes between these two extreme phenotypes. Methods We sequenced germline whole exomes from 139 aggressive (metastatic, age of diagnosis < 60) and 141 non-aggressive (low clinical grade, age of diagnosis ≥60) PrCa cases. We conducted rare variant association analyses at gene and gene set levels using SKAT and Bayesian risk index techniques. GO term enrichment analysis was performed for genes with the highest differential burden of rare disruptive variants. Results Protein truncating variants (PTVs) in specific DNA repair genes were significantly overrepresented among patients with the aggressive phenotype, with BRCA2, ATM and NBN the most frequently mutated genes. Differential burden of rare variants was identified between metastatic and non-aggressive cases for several genes implicated in angiogenesis, conferring both deleterious and protective effects. Conclusions Inherited PTVs in several DNA repair genes distinguish aggressive from non-aggressive PrCa cases. Furthermore, inherited variants in genes with roles in angiogenesis may be potential predictors for risk of metastases. If validated in a larger dataset, these findings have potential for future clinical application

    A recurrent truncating germline mutation in the BRIP1/FANCJ gene and susceptibility to prostate cancer

    Get PDF
    Although prostate cancer (PrCa) is one of the most common cancers in men in Western countries, little is known about the inherited factors that influence PrCa risk. On the basis of the fact that BRIP1/FANCJ interacts with BRCA1 and functions as a regulator of DNA double-strand break repair pathways, and that germline mutations within the BRIP1/FANCJ gene predispose to breast cancer, we chose this gene as a candidate for mutation screening in familial and young-onset PrCa cases. We identified a truncating mutation, R798X, in the BRIP1/FANCJ gene in 4 out of 2714 UK PrCa cases enriched for familial (2 out of 641; 0.3%) and young-onset cases (2 out of 2073; 0.1%). On screening 2045 controls from the UK population, we found one R798X sequence alteration (0.05%; odds ratio 2.4 (95% CI 0.25–23.4)). In addition, using our data from a genome-wide association study, we analysed 25 SNPs in the genomic region of the BRIP1/FANCJ gene. Two SNPs showed evidence of association with familial and young-onset PrCa (rs6504074; Ptrend=0.04 and rs8076727; Ptrend=0.01). These results suggest that truncating mutations in BRIP1/FANCJ might confer an increased risk of PrCa and common SNPs might also contribute to the alteration of risk, but larger case–control series will be required to confirm or refute this association

    Fine-mapping identifies multiple prostate cancer risk loci at 5p15, one of which associates with TERT expression

    Get PDF
    Associations between single nucleotide polymorphisms (SNPs) at 5p15 and multiple cancer types have been reported. We have previously shown evidence for a strong association between prostate cancer (PrCa) risk and rs2242652 at 5p15, intronic in the telomerase reverse transcriptase (TERT) gene that encodes TERT. To comprehensively evaluate the association between genetic variation across this region and PrCa, we performed a fine-mapping analysis by genotyping 134 SNPs using a custom Illumina iSelect array or Sequenom MassArray iPlex, followed by imputation of 1094 SNPs in 22 301 PrCa cases and 22 320 controls in The PRACTICAL consortium. Multiple stepwise logistic regression analysis identified four signals in the promoter or intronic regions of TERT that independently associated with PrCa risk. Gene expression analysis of normal prostate tissue showed evidence that SNPs within one of these regions also associated with TERT expression, providing a potential mechanism for predisposition to disease

    Polyunsaturated fatty acids and prostate cancer risk: a Mendelian randomisation analysis from the PRACTICAL consortium.

    Get PDF
    BACKGROUND: Prostate cancer is a common cancer worldwide with no established modifiable lifestyle factors to guide prevention. The associations between polyunsaturated fatty acids (PUFAs) and prostate cancer risk have been inconsistent. Using Mendelian randomisation, we evaluated associations between PUFAs and prostate cancer risk. METHODS: We used individual-level data from a consortium of 22 721 cases and 23 034 controls of European ancestry. Externally-weighted PUFA-specific polygenic risk scores (wPRSs), with explanatory variation ranging from 0.65 to 33.07%, were constructed and used to evaluate associations with prostate cancer risk per one standard deviation (s.d.) increase in genetically-predicted plasma PUFA levels using multivariable-adjusted unconditional logistic regression. RESULTS: No overall association was observed between the genetically-predicted PUFAs evaluated in this study and prostate cancer risk. However, risk reductions were observed for short-chain PUFAs, linoleic (ORLA=0.95, 95%CI=0.92, 0.98) and α-linolenic acids (ORALA=0.96, 95%CI=0.93, 0.98), among men <62 years; whereas increased risk was found among men ⩾62 years for LA (ORLA=1.04, 95%CI=1.01, 1.07). For long-chain PUFAs (i.e., arachidonic, eicosapentaenoic, and docosapentaenoic acids), increased risks were observed among men <62 years (ORAA=1.05, 95%CI=1.02, 1.08; OREPA=1.04, 95%CI=1.01, 1.06; ORDPA=1.05, 95%CI=1.02, 1.08). CONCLUSION: Results from this study suggest that circulating ω-3 and ω-6 PUFAs may have a different role in the aetiology of early- and late-onset prostate cancer

    Pubertal development and prostate cancer risk: Mendelian randomization study in a population-based cohort

    Get PDF
    BACKGROUND: Epidemiological studies have observed a positive association between an earlier age at sexual development and prostate cancer, but markers of sexual maturation in boys are imprecise and observational estimates are likely to suffer from a degree of uncontrolled confounding. To obtain causal estimates, we examined the role of pubertal development in prostate cancer using genetic polymorphisms associated with Tanner stage in adolescent boys in a Mendelian randomization (MR) approach. METHODS: We derived a weighted genetic risk score for pubertal development, combining 13 SNPs associated with male Tanner stage. A higher score indicated a later puberty onset. We examined the association of this score with prostate cancer risk, stage and grade in the UK-based ProtecT case-control study (n = 2,927), and used the PRACTICAL consortium (n = 43,737) as a replication sample. RESULTS: In ProtecT, the puberty genetic score was inversely associated with prostate cancer grade (odds ratio (OR) of high- vs. low-grade cancer, per tertile of the score: 0.76; 95 % CI, 0.64-0.89). In an instrumental variable estimation of the causal OR, later physical development in adolescence (equivalent to a difference of one Tanner stage between pubertal boys of the same age) was associated with a 77 % (95 % CI, 43-91 %) reduced odds of high Gleason prostate cancer. In PRACTICAL, the puberty genetic score was associated with prostate cancer stage (OR of advanced vs. localized cancer, per tertile: 0.95; 95 % CI, 0.91-1.00) and prostate cancer-specific mortality (hazard ratio amongst cases, per tertile: 0.94; 95 % CI, 0.90-0.98), but not with disease grade. CONCLUSIONS: Older age at sexual maturation is causally linked to a reduced risk of later prostate cancer, especially aggressive disease

    Pubertal development and prostate cancer risk: Mendelian randomization study in a population-based cohort

    Get PDF
    Background: Epidemiological studies have observed a positive association between an earlier age at sexual development and prostate cancer, but markers of sexual maturation in boys are imprecise and observational estimates are likely to suffer from a degree of uncontrolled confounding. To obtain causal estimates, we examined the role of pubertal development in prostate cancer using genetic polymorphisms associated with Tanner stage in adolescent boys in a Mendelian randomization (MR) approach.Methods: We derived a weighted genetic risk score for pubertal development, combining 13 SNPs associated with male Tanner stage. A higher score indicated a later puberty onset. We examined the association of this score with prostate cancer risk, stage and grade in the UK-based ProtecT case-control study (n = 2,927), and used the PRACTICAL consortium (n = 43,737) as a replication sample.Results: In ProtecT, the puberty genetic score was inversely associated with prostate cancer grade (odds ratio (OR) of high-vs. low-grade cancer, per tertile of the score: 0.76; 95 % CI, 0.64-0.89). In an instrumental variable estimation of the causal OR, later physical development in adolescence (equivalent to a difference of one Tanner stage between pubertal boys of the same age) was associated with a 77 % (95 % CI, 43-91 %) reduced odds of high Gleason prostate cancer. In PRACTICAL, the puberty genetic score was associated with prostate cancer stage (OR of advanced vs. localized cancer, per tertile: 0.95; 95 % CI, 0.91-1.00) and prostate cancer-specific mortality (hazard ratio amongst cases, per tertile: 0.94; 95 % CI, 0.90-0.98), but not with disease grade.Conclusions: Older age at sexual maturation is causally linked to a reduced risk of later prostate cancer, especially aggressive disease

    The genomic evolution of human prostate cancer.

    Get PDF
    Prostate cancers are highly prevalent in the developed world, with inheritable risk contributing appreciably to tumour development. Genomic heterogeneity within individual prostate glands and between patients derives predominantly from structural variants and copy-number aberrations. Subtypes of prostate cancers are being delineated through the increasing use of next-generation sequencing, but these subtypes are yet to be used to guide the prognosis or therapeutic strategy. Herein, we review our current knowledge of the mutational landscape of human prostate cancer, describing what is known of the common mutations underpinning its development. We evaluate recurrent prostate-specific mutations prior to discussing the mutational events that are shared both in prostate cancer and across multiple cancer types. From these data, we construct a putative overview of the genomic evolution of human prostate cancer
    corecore