55 research outputs found

    Techniques for an image space occlusion culling engine

    Get PDF
    In this work we present several techniques applied to implement an Image Space Software Occlusion Culling Engine to increase the speed of rendering general dynamic scenes with high depth complexity. This conservative culling method is based on a tiled Occlusion Map that is updated only when needed, deferring and even avoiding the expensive per pixel rasterization process. We show how the tiles become a useful way to increase the speed of visibility tests. Finally we describe how different parts of the engine were parallelized using OpenMP directives and SIMD instructions.Eje: Workshop Computación gráfica, imágenes y visualización (WCGIV)Red de Universidades con Carreras en Informática (RedUNCI

    Implementing software occlusion culling for real-time applications

    Get PDF
    The visualization of complex virtual scenes can be significantly accelerated by applying Occlusion Culling. In this work we introduce a variant of the Hierarchical Occlusion Map method to be used in Real-Time applications. To avoid using real objects geometry we generate specialized conservative Occluders based on Axis Aligned Bounding Boxes which are converted into coplanar quads and then rasterized in CPU using a downscaled Depth Buffer. We implement this method in a 3D scene using a software occlusion map rasterizer module specifically optimized to rasterize Occluder quads into a Depth Buffer. We demonstrate that this approach effectively increases the number of occluded objects without generating significant runtime overhead.Eje: Workshop Computación gráfica, imágenes y visualización (WCGIV)Red de Universidades con Carreras en Informática (RedUNCI

    Techniques for an image space occlusion culling engine

    Get PDF
    In this work we present several techniques applied to implement an Image Space Software Occlusion Culling Engine to increase the speed of rendering general dynamic scenes with high depth complexity. This conservative culling method is based on a tiled Occlusion Map that is updated only when needed, deferring and even avoiding the expensive per pixel rasterization process. We show how the tiles become a useful way to increase the speed of visibility tests. Finally we describe how different parts of the engine were parallelized using OpenMP directives and SIMD instructions.Eje: Workshop Computación gráfica, imágenes y visualización (WCGIV)Red de Universidades con Carreras en Informática (RedUNCI

    HIPK2 and extrachromosomal histone H2B are separately recruited by Aurora-B for cytokinesis

    Get PDF
    Cytokinesis, the final phase of cell division, is necessary to form two distinct daughter cells with correct distribution of genomic and cytoplasmic materials. Its failure provokes genetically unstable states, such as tetraploidization and polyploidization, which can contribute to tumorigenesis. Aurora-B kinase controls multiple cytokinetic events, from chromosome condensation to abscission when the midbody is severed. We have previously shown that HIPK2, a kinase involved in DNA damage response and development, localizes at the midbody and contributes to abscission by phosphorylating extrachromosomal histone H2B at Ser14. Of relevance, HIPK2-defective cells do not phosphorylate H2B and do not successfully complete cytokinesis leading to accumulation of binucleated cells, chromosomal instability, and increased tumorigenicity. However, how HIPK2 and H2B are recruited to the midbody during cytokinesis is still unknown. Here, we show that regardless of their direct (H2B) and indirect (HIPK2) binding of chromosomal DNA, both H2B and HIPK2 localize at the midbody independently of nucleic acids. Instead, by using mitotic kinase-specific inhibitors in a spatio-temporal regulated manner, we found that Aurora-B kinase activity is required to recruit both HIPK2 and H2B to the midbody. Molecular characterization showed that Aurora-B directly binds and phosphorylates H2B at Ser32 while indirectly recruits HIPK2 through the central spindle components MgcRacGAP and PRC1. Thus, among different cytokinetic functions, Aurora-B separately recruits HIPK2 and H2B to the midbody and these activities contribute to faithful cytokinesis

    Thiolutin is a zinc chelator that inhibits the Rpn11 and other JAMM metalloproteases

    Get PDF
    Thiolutin is a disulfide-containing antibiotic and anti-angiogenic compound produced by Streptomyces. Its biological targets are not known. We show that reduced thiolutin is a zinc chelator that inhibits the JAB1/MPN/Mov34 (JAMM) domain–containing metalloprotease Rpn11, a deubiquitinating enzyme of the 19S proteasome. Thiolutin also inhibits the JAMM metalloproteases Csn5, the deneddylase of the COP9 signalosome; AMSH, which regulates ubiquitin-dependent sorting of cell-surface receptors; and BRCC36, a K63-specific deubiquitinase of the BRCC36-containing isopeptidase complex and the BRCA1–BRCA2-containing complex. We provide evidence that other dithiolopyrrolones also function as inhibitors of JAMM metalloproteases

    Interaction of AMSH with ESCRT-III and deubiquitination of endosomal cargo

    No full text

    Baudelaire : vida atormentada

    No full text

    A Unified Geometry Parametrization Method for Turbomachinery Blades

    No full text
    Turbomachinery design is increasingly carried out by means of automated workflows based on high-fidelity physical models and optimization algorithms. The parametrization of the blade geometry is an essential aspect of such workflows because it defines the design space in which an optimal solution can be found. Currently, parametrization methods used for this purpose are often tailored to one particular type of turbomachinery blade, do not provide shape derivatives required for gradient-based optimization, or are not suited to re-parametrize a baseline blade geometry defined by a set of scattered point coordinates in a systematic way. This paper thus presents a general blade parametrization method for axial, radial, and mixed flow blades based on typical turbomachinery design variables and NURBS curves and surfaces. The shape derivatives are computed by means of the complex-step method, allowing the integration of the parametrization into gradient-based shape optimization workflows. In addition, the method enables the re-parametrization of a blade geometry defined by a cloud of points by solving a two-step optimization problem. The capabilities of the method are demonstrated by replicating eight blade geometries in two and three dimensions with an accuracy comparable to the tolerances of current manufacturing technologies

    Multirow Adjoint-Based Optimization of NICFD Turbomachinery Using a Computer-Aided Design-Based Parametrization

    No full text
    Currently, most of the adjoint-based design systems documented in the open literature assume that the fluid behaves as an ideal gas, are restricted to the optimization of a single row of blades, or are not suited to impose geometric constraints. In response to these limitations, this paper presents a gradient-based shape optimization framework for the aerodynamic design of turbomachinery blades operating under nonideal thermodynamic conditions. The proposed design system supports the optimization of multiple blade rows, and it integrates a computer-aided design (CAD)-based parametrization with a Reynolds-averaged Navier–Stokes (RANS) flow solver and its discrete adjoint counterpart. The capabilities of the method were demonstrated by performing the design optimization of a single-stage axial turbine that employs isobutane (R600a) as working fluid. Notably, the aerodynamic optimization respected the minimum thickness constraint at the trailing edge of the stator and rotor blades and reduced the entropy generation within the turbine by 36%, relative to the baseline, which corresponds to a total-to-total isentropic efficiency increase of about 4 percentage points. The analysis of the flow field revealed that the performance improvement was achieved due to the reduction of the wake intensity downstream of the blades and the elimination of a shock-induced separation bubble at the suction side of the stator cascade.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Flight Performance and Propulsio
    • …
    corecore