11 research outputs found

    In vitro activity of daptomycin, linezolid and rifampicin on Staphylococcus epidermidis biofilms

    Get PDF
    Owing to their massive use, Staphylococcus epidermidis has recently developed significant resistance to several antibiotics, and became one of the leading causes of hospital-acquired infections. Current antibiotics are typically ineffective in the eradication of bacteria in biofilmassociated persistent infections. Accordingly, the paucity of effective treatment against cells in this mode of growth is a key factor that potentiates the need for new agents active in the prevention or eradication of biofilms. Daptomycin and linezolid belong to the novel antibiotic therapies that are active against gram-positive cocci. On the other hand, rifampicin has been shown to be one of the most potent, prevalent antibiotics against S. epidermidis biofilms. Therefore, the main aim of this study was to study the susceptibility of S. epidermidis biofilm cells to the two newer antimicrobial agents previously mentioned, and compare the results obtained with the antimicrobial effect of rifampicin, widely used in the prevention/treatment of indwelling medical device infections. To this end the in vitro activities of daptomycin, linezolid, and rifampicin on S. epidermidis biofilms were accessed, using these antibiotics at MIC and peak serum concentrations. The results demonstrated that at MIC concentration, rifampicin was the most effective antibiotic tested. At peak serum concentration, both strains demonstrated similar susceptibility to rifampicin and daptomycin, with colony-forming units (CFUs) reductions of approximately 3–4 log10, with a slightly lower response to linezolid, which was also more strain dependent. However, considering all the parameters studied, daptomycin was considered the most effective antibiotic tested, demonstrating an excellent in vitro activity against S. epidermidis biofilm cells. In conclusion, this antibiotic can be strongly considered as an acceptable therapeutic option for S. epidermidis biofilm-associated infections and can represent a potential alternative to rifampicin in serious infections where rifampicin resistance becomes prevalent.Bruna Leite acknowledges the financial support from ISAC/Program Erasmus Munds External Cooperation and the IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus of Gualtar. Fernanda Gomes and Pilar Teixeira fully acknowledge the financial support from Fundacao para a Ciencia e Tecnologia (FCT) through the grants SFRH/BD/32126/2006 and SFRH/BPD/26803/2006, respectively

    Isolation, identification and molecular typing of cryptococcus neoformans from pigeon droppings and other environmental sources in Tripoli, Libya

    No full text
    Cryptococcus neoformans and C. gattii are the major cause of fungal meningitis, a potentially lethal mycosis. Since pigeon excreta and other environmental sources can be considered a significant environmental reservoir of this species in urban areas, 100 samples of pigeon excreta and 420 samples from Eucalyptus camaldulensis and Olea europaea (olive tree) around the city of Tripoli, Libya, were collected. C. neoformans was isolated and identified using standard biochemical assays from 46 samples: 34 from pigeon droppings, 3 from Eucalyptus trees and 9 from olive trees. Molecular typing revealed that all isolates from pigeon droppings belonged to molecular type VNI (C. neoformans var. grubii) and mating type \u3b1A, whereas those from trees included also the molecular type VNII and VNIII (AD hybrids). The present study reports, for the first time, information about the distribution of species, mating types and molecular types of C. neoformans/C. gattii species complex in Libya
    corecore