232 research outputs found

    Artificial neural network-statistical approach for PET volume analysis and classification

    Get PDF
    Copyright © 2012 The Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.This article has been made available through the Brunel Open Access Publishing Fund.The increasing number of imaging studies and the prevailing application of positron emission tomography (PET) in clinical oncology have led to a real need for efficient PET volume handling and the development of new volume analysis approaches to aid the clinicians in the clinical diagnosis, planning of treatment, and assessment of response to therapy. A novel automated system for oncological PET volume analysis is proposed in this work. The proposed intelligent system deploys two types of artificial neural networks (ANNs) for classifying PET volumes. The first methodology is a competitive neural network (CNN), whereas the second one is based on learning vector quantisation neural network (LVQNN). Furthermore, Bayesian information criterion (BIC) is used in this system to assess the optimal number of classes for each PET data set and assist the ANN blocks to achieve accurate analysis by providing the best number of classes. The system evaluation was carried out using experimental phantom studies (NEMA IEC image quality body phantom), simulated PET studies using the Zubal phantom, and clinical studies representative of nonsmall cell lung cancer and pharyngolaryngeal squamous cell carcinoma. The proposed analysis methodology of clinical oncological PET data has shown promising results and can successfully classify and quantify malignant lesions.This study was supported by the Swiss National Science Foundation under Grant SNSF 31003A-125246, Geneva Cancer League, and the Indo Swiss Joint Research Programme ISJRP 138866. This article is made available through the Brunel Open Access Publishing Fund

    Automatic generation of fuzzy classification rules using granulation-based adaptive clustering

    Get PDF
    A central problem of fuzzy modelling is the generation of fuzzy rules that fit the data to the highest possible extent. In this study, we present a method for automatic generation of fuzzy rules from data. The main advantage of the proposed method is its ability to perform data clustering without the requirement of predefining any parameters including number of clusters. The proposed method creates data clusters at different levels of granulation and selects the best clustering results based on some measures. The proposed method involves merging clusters into new clusters that have a coarser granulation. To evaluate performance of the proposed method, three different datasets are used to compare performance of the proposed method to other classifiers: SVM classifier, FCM fuzzy classifier, subtractive clustering fuzzy classifier. Results show that the proposed method has better classification results than other classifiers for all the datasets used

    Monitoring of power factor for induction machines using estimation techniques

    Get PDF
    Power factor is a significant element in power systems which is defined as the angle difference between voltages and currents that produces power fluctuation between sources and loads. Since, 40-50% of consumption of electrical power in industry is induction machines which are inductive loads, monitoring of the power factor is necessary in order to protect systems. To monitor the power factor on induction machines, it would require both voltage and current waveforms measurement in order to apply the displacement method which require equipments. In this paper, we present a mathematical method using Kriging to determine the operating power factor for an induction machine. Estimation of the operating power factor would be effectively implemented for under load detection and compensation for improving the power quality. Experimental results will be indicated to substantiate the feasibility of the proposed methods

    Multi-objective genetic optimisation for self-organising fuzzy logic control

    Get PDF
    This is the post-print version of the article. The official published version can be accessed from the link below.A multi-objective genetic algorithm is developed for the purpose of optimizing the rule-base of a Self-Organising Fuzzy Logic Control algorithm (SOFLC). The tuning of the SOFLC optimization is based on selection of the best shaped performance index for modifying the rule-base on-line. A comparative study is conducted between various methods of multi-objective genetic optimisation using the SOFLC algorithm on the muscle relaxant anaesthesia system, which includes a severe non-linearity, varying dynamics and time-delay

    WSN and RFID integration to support intelligent monitoring in smart buildings using hybrid intelligent decision support systems

    Get PDF
    The real time monitoring of environment context aware activities is becoming a standard in the service delivery in a wide range of domains (child and elderly care and supervision, logistics, circulation, and other). The safety of people, goods and premises depends on the prompt reaction to potential hazards identified at an early stage to engage appropriate control actions. This requires capturing real time data to process locally at the device level or communicate to backend systems for real time decision making. This research examines the wireless sensor network and radio frequency identification technology integration in smart homes to support advanced safety systems deployed upstream to safety and emergency response. These systems are based on the use of hybrid intelligent decision support systems configured in a multi-distributed architecture enabled by the wireless communication of detection and tracking data to support intelligent real-time monitoring in smart buildings. This paper introduces first the concept of wireless sensor network and radio frequency identification technology integration showing the various options for the task distribution between radio frequency identification and hybrid intelligent decision support systems. This integration is then illustrated in a multi-distributed system architecture to identify motion and control access in a smart building using a room capacity model for occupancy and evacuation, access rights and a navigation map automatically generated by the system. The solution shown in the case study is based on a virtual layout of the smart building which is implemented using the capabilities of the building information model and hybrid intelligent decision support system.The Saudi High Education Ministry and Brunel University (UK

    Hybrid biomedical intelligent systems

    Get PDF
    "Copyright © 2012 Maysam Abbod et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited."The purpose of this special issue is to promote research and developments of the best work in the field of hybrid intelligent systems for biomedical applications

    Evolutionary computing for metals properties modelling

    Get PDF
    This is a post print version of the article, the official published version can be obtained from the link below.During the last decade Genetic Programming (GP) has emerged as an efficient methodology for teaching computers how to program themselves. This paper presents research work which utilizes GP for developing mathematical equations for the response surfaces that have been generated using hybrid modelling techniques for predicting the properties of materials under hot deformation. Collected data from the literature and experimental work on aluminium are utilized as the initial training data for the GP to develop the mathematical models under different deformation conditions and compositions.Financial support from the UK EPSRC (Engineering and Physical Sciences Research Council) under grant number GR/R70514/01 was used in this study

    Modelling of dynamic recrystallisation of 316L stainless steel using a systems approach

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link below.Dynamic recrystallisation (DRX) is an important aspect for industrial applications in hot metal working. Although DRX has been known for more than thirty years, its mechanisms have never been precisely investigated, in part because it was not readily possible to make local texture measurements. In the present work, the material behaviour during DRX is investigated and modelled based on the microstructure of 316L stainless steel. The developed model is based on a constitutive equation Modelling technique which incorporates the strain, strain rate and instantaneous temperature for predicting the flow stress of material being deformed under hot conditions.Financial support from the UK EPSRC (Engineering and Physical Sciences Research Council) for their financial support under grant number GR/R70514/01 was used for this study

    Non-thermal plasma technology for the abatement of NOx and SOx from the exhaust of marine diesel engine

    Get PDF
    Non-thermal plasma based technology is proposed to the abatement of NOx and SOx of the exhaust gas from marine diesel engine. Proposed technology uses electron gun and microwave energy to generate the plasma. Fundamentals of non-thermal plasma and chemistry are presented with a set of simulation results of the reduction of NOx and SO2 for a typical two stoke marine diesel exhaust engine which is supported by an experimental results obtained with microwave plasma. A new scheme is also proposed in this paper to generate required plasma for the treatment of NOx and SOx form high exhaust flow rate

    An Ensemble Classification and Regression Neural Network for Evaluating Role-based Tasks Associated with Organizational Unit

    Get PDF
    Copyright (c) 2022 In this paper, we have looked at how easy it is for users in an organisation to be given different roles, as well as how important it is to make sure that the tasks are done well using predictive analytical tools. As a result, ensemble of classification and regression tree link Neural Network was adopted for evaluating the effectiveness of role-based tasks associated with organization unit. A Human Resource Manangement System was design and developed to obtain comprehensive information about their employees’ performance levels, as well as to ascertain their capabilities, skills, and the tasks they perform and how they perform them. Datasets were drawn from evaluation of the system and used for machine learning evaluation. Linear regression models, decision trees, and Genetic Algorithm have proven to be good at prediction in all cases. In this way, the research findings highlight the need of ensuring that users tasks are done in a timely way, as well as enhancing an organization’s ability to assign individual duties
    corecore