856 research outputs found

    Strong low-frequency quantum correlations from a four-wave mixing amplifier

    Full text link
    We show that a simple scheme based on nondegenerate four-wave mixing in a hot atomic vapor behaves like a near-perfect phase-insensitive optical amplifier, which can generate bright twin beams with a measured quantum noise reduction in the intensity difference of more than 8 dB, close to the best optical parametric amplifiers and oscillators. The absence of a cavity makes the system immune to external perturbations, and the strong quantum noise reduction is observed over a large frequency range.Comment: 4 pages, 4 figures. Major rewrite of the previous version. New experimental results and further analysi

    Spinor Dynamics in an Antiferromagnetic Spin-1 Condensate

    Full text link
    We observe coherent spin oscillations in an antiferromagnetic spin-1 Bose-Einstein condensate of sodium. The variation of the spin oscillations with magnetic field shows a clear signature of nonlinearity, in agreement with theory, which also predicts anharmonic oscillations near a critical magnetic field. Measurements of the magnetic phase diagram agree with predictions made in the approximation of a single spatial mode. The oscillation period yields the best measurement to date of the sodium spin-dependent interaction coefficient, determining that the difference between the sodium spin-dependent s-wave scattering lengths af=2af=0a_{f=2}-a_{f=0} is 2.47±0.272.47\pm0.27 Bohr radii.Comment: 5 pages, 2 figures. Changes: added reference, minor correction

    Trapping of Neutral Rubidium with a Macroscopic Three-Phase Electric Trap

    Full text link
    We trap neutral ground-state rubidium atoms in a macroscopic trap based on purely electric fields. For this, three electrostatic field configurations are alternated in a periodic manner. The rubidium is precooled in a magneto-optical trap, transferred into a magnetic trap and then translated into the electric trap. The electric trap consists of six rod-shaped electrodes in cubic arrangement, giving ample optical access. Up to 10^5 atoms have been trapped with an initial temperature of around 20 microkelvin in the three-phase electric trap. The observations are in good agreement with detailed numerical simulations.Comment: 4 pages, 4 figure

    Dynamics of a nanomechanical resonator coupled to a superconducting single-electron transistor

    Get PDF
    We present an analysis of the dynamics of a nanomechanical resonator coupled to a superconducting single electron transistor (SSET) in the vicinity of the Josephson quasiparticle (JQP) and double Josephson quasiparticle (DJQP) resonances. For weak coupling and wide separation of dynamical timescales, we find that for either superconducting resonance the dynamics of the resonator is given by a Fokker-Planck equation, i.e., the SSET behaves effectively as an equilibrium heat bath, characterised by an effective temperature, which also damps the resonator and renormalizes its frequency. Depending on the gate and drain-source voltage bias points with respect to the superconducting resonance, the SSET can also give rise to an instability in the mechanical resonator marked by negative damping and temperature within the appropriate Fokker-Planck equation. Furthermore, sufficiently close to a resonance, we find that the Fokker-Planck description breaks down. We also point out that there is a close analogy between coupling a nanomechanical resonator to a SSET in the vicinity of the JQP resonance and Doppler cooling of atoms by means of lasers

    The impact of starchy food structure on postprandial glycemic response and appetite: a systematic review with meta-analysis of randomized crossover trials

    Get PDF
    Background Starchy foods can have a profound effect on metabolism. The structural properties of starchy foods can affect their digestibility and postprandial metabolic responses, which in the long term may be associated with the risk of type 2 diabetes and obesity. Objectives This systematic review sought to evaluate the clinical evidence regarding the impact of the microstructures within starchy foods on postprandial glucose and insulin responses alongside appetite regulation. Methods A systematic search was performed in the PUBMED, Ovid Medicine, EMBASE, and Google Scholar databases for data published up to 18 January 2021. Data were extracted by 3 independent reviewers from randomized crossover trials (RCTs) that investigated the effect of microstructural factors on postprandial glucose, insulin, appetite-regulating hormone responses, and subjective satiety scores in healthy participants. Results We identified 745 potential articles, and 25 RCTs (n = 369 participants) met our inclusion criteria: 6 evaluated the amylose-to-amylopectin ratio, 6 evaluated the degree of starch gelatinization, 2 evaluated the degree of starch retrogradation, 1 studied starch–protein interactions, and 12 investigated cell and tissue structures. Meta-analyses showed that significant reductions in postprandial glucose and insulin levels was caused by starch with a high amylose content [standardized mean difference (SMD) = −0.64 mmol/L*min (95% CI: −0.83 to −0.46) and SMD = −0.81 pmol/L*min (95% CI: −1.07 to −0.55), respectively], less-gelatinized starch [SMD = −0.54 mmol/L*min (95% CI: −0.75 to −0.34) and SMD = −0.48 pmol/L*min (95% CI: −0.75 to −0.21), respectively], retrograded starch (for glucose incremental AUC; SMD = −0.46 pmol/L*min; 95% CI: −0.80 to −0.12), and intact and large particles [SMD = −0.43 mmol/L*min (95% CI: −0.58 to −0.28) and SMD = −0.63 pmol/L*min (95% CI: −0.86 to −0.40), respectively]. All analyses showed minor or moderate heterogeneity (I2 < 50%). Sufficient evidence was not found to suggest how these structural factors influence appetite. Conclusions The manipulation of microstructures in starchy food may be an effective way to improve postprandial glycemia and insulinemia in the healthy population. The protocol for this systematic review and meta-analysis was registered in the international prospective register of systematic reviews (PROSPERO) as CRD42020190873

    Narrow Line Cooling: Finite Photon Recoil Dynamics

    Full text link
    We present an extensive study of the unique thermal and mechanical dynamics for narrow-line cooling on the 1S0 - 3P1 88Sr transition. For negative detuning, trap dynamics reveal a transition from the semiclassical regime to the photon-recoil-dominated quantum regime, yielding an absolute minima in the equilibrium temperature below the single-photon recoil limit. For positive detuning, the cloud divides into discrete momentum packets whose alignment mimics lattice points on a face-centered-cubic crystal. This novel behavior arises from velocity selection and "positive feedback" acceleration due to a finite number of photon recoils. Cooling is achieved with blue-detuned light around a velocity where gravity balances the radiative force.Comment: 4 pages, 3 figures, Phys. Rev. Lett., in pres

    Violation of the Cauchy-Schwarz Inequality in the Macroscopic Regime

    Full text link
    We have observed a violation of the Cauchy-Schwarz inequality in the macroscopic regime by more than 8 standard deviations. The violation has been obtained while filtering out only the low frequency noise of the quantum-correlated beams that results from the technical noise of the laser used to generate them. We use bright intensity-difference squeezed beams produced by four-wave mixing as the source of the correlated fields. We also demonstrate that squeezing does not necessarily imply a violation of the Cauchy-Schwarz inequality.Comment: 5 pages, 4 figure

    Growth, Nitrogen and Phosphorus Economy in Two \u3ci\u3eLotus Glaber\u3c/i\u3e Mill. Cytotypes Grown Under Contrasting P-Availability

    Get PDF
    Lotus glaber Mill. (lotus) is a forage legume with its origin in Europe which has shown an excellent adaptation to the Depressed Pampas of the Province of Buenos Aires, Argentina. The soils colonized by lotus usually have poor drainage, moderate sodium and low extractable P concentrations. An experiment was performed with the aim of comparing the early growth and economy of phosphorus (P) and nitrogen (N) within two L. glaber cytotypes differing in their ploidy level, a commercial diploid versus an induced autotetraploid population (Barufaldi et al., 2001)

    Instability Heating of Sympathetically-Cooled Ions in a Linear Paul Trap

    Get PDF
    Sympathetic laser cooling of ions stored within a linear-geometry, radio frequency, electric-quadrupole trap has been investigated using computational and theoretical techniques. The simulation, which allows 5 sample ions to interact with 35 laser-cooled atomic ions, revealed an instability heating mechanism, which can prevent ions below a certain critical mass from being sympathetically cooled. This critical mass can however be varied by changing the trapping field parameters thus allowing ions with a very large range of masses to be sympathetically cooled using a single ion species. A theoretical explanation of this instability heating mechanism is presented which predicts that the cooling-heating boundary in trapping parameter space is a line of constant quq_u (ion trap stability coefficient), a result supported by the computational results. The threshold value of quq_u depends on the masses of the interacting ions. A functional form of this dependence is given
    corecore