50,870 research outputs found
Quantum critical behaviour of the plateau-insulator transition in the quantum Hall regime
High-field magnetotransport experiments provide an excellent tool to
investigate the plateau-insulator phase transition in the integral quantum Hall
effect. Here we review recent low-temperature high-field magnetotransport
studies carried out on several InGaAs/InP heterostructures and an InGaAs/GaAs
quantum well. We find that the longitudinal resistivity near the
critical filling factor ~ 0.5 follows the universal scaling law
, where . The critical exponent equals ,
which indicates that the plateau-insulator transition falls in a non-Fermi
liquid universality class.Comment: 8 pages, accepted for publication in Proceedings of the Yamada
Conference LX on Research in High Magnetic Fields (August 16-19, 2006,
Sendai
Quantum phase transition in the Dicke model with critical and non-critical entanglement
We study the quantum phase transition of the Dicke model in the classical
oscillator limit, where it occurs already for finite spin length. In contrast
to the classical spin limit, for which spin-oscillator entanglement diverges at
the transition, entanglement in the classical oscillator limit remains small.
We derive the quantum phase transition with identical critical behavior in the
two classical limits and explain the differences with respect to quantum
fluctuations around the mean-field ground state through an effective model for
the oscillator degrees of freedom. With numerical data for the full quantum
model we study convergence to the classical limits. We contrast the classical
oscillator limit with the dual limit of a high frequency oscillator, where the
spin degrees of freedom are described by the Lipkin-Meshkov-Glick model. An
alternative limit can be defined for the Rabi case of spin length one-half, in
which spin frequency renormalization replaces the quantum phase transition.Comment: 1o pages, 10 figures, published versio
Photon-Photon Collisions with SuperChic
The SuperChic Monte Carlo generator provides a common platform for
QCD-mediated, photoproduction and photon-induced Central Exclusive Production
(CEP), with a fully differential treatment of soft survival effects. In these
proceedings we summarise the processes generated, before discussing in more
detail those due to photon-photon collisions, paying special attention to the
correct treatment of the survival factor. We briefly consider the
light-by-light scattering process as an example, before discussing planned
extensions and refinements for the generator.Comment: 6 pages, 2 figures. Submitted to proceedings of the PHOTON 2017
conferenc
Unstable resonator cavity semiconductor lasers
GaAs heterostructure lasers with unstable resonator cavities were demonstrated for the first time with both curved mirrors fabricated by etching. Typical output powers of 0.35 W were observed in a stable, highly coherent lateral mode. The laser operated stably in a single longitudinal mode over a large range of injection currents. The external quantum efficiency was 70% of that of a similar laser with both mirror facets cleaved implying good output coupling of the energy from the entire region
Signatures of Hong-Ou-Mandel Interference at Microwave Frequencies
Two-photon quantum interference at a beam splitter, commonly known as
Hong-Ou-Mandel interference, was recently demonstrated with
\emph{microwave-frequency} photons by Lang \emph{et
al.}\,\cite{lang:microwaveHOM}. This experiment employed circuit QED systems as
sources of microwave photons, and was based on the measurement of second-order
cross-correlation and auto-correlation functions of the microwave fields at the
outputs of the beam splitter. Here we present the calculation of these
correlation functions for the cases of inputs corresponding to: (i) trains of
\emph{pulsed} Gaussian or Lorentzian single microwave photons, and (ii)
resonant fluorescent microwave fields from \emph{continuously-driven} circuit
QED systems. The calculations include the effects of the finite bandwidth of
the detection scheme. In both cases, the signature of two-photon quantum
interference is a suppression of the second-order cross-correlation function
for small delays. The experiment described in Ref.
\onlinecite{lang:microwaveHOM} was performed with trains of \emph{Lorentzian}
single photons, and very good agreement between the calculations and the
experimental data was obtained.Comment: 11 pages, 3 figure
- …
