197,307 research outputs found

    Larkin-Ovchinnikov-Fulde-Ferrell state in two-color quark matter

    Full text link
    We explore the phase structure of two-color and two-flavor QCD in the space of the quark chemical potential \mu_q and the isospin chemical potential \mu_I. Using a mean-field model we calculate the chiral and diquark condensates, \sigma and \Delta, self-consistently. In weak coupling and in the chiral limit, we confirm the interval of the isospin chemical potential, 0.71\Delta_0<\mu_I<0.75\Delta_0, in which a single plane-wave Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) phase is favored over isotropic superfluidity and normal quark matter. The LOFF window becomes slightly wider at high density. For stronger coupling with nonzero quark mass, which is relevant to currently available numerical simulations in lattice two-color QCD, the single plane-wave LOFF phase appears only at sufficiently high density. The prediction obtained for the LOFF region could be tested with lattice since we can prove that the present system is free from the fermion sign problem. We draw the energy landscape on which local minima corresponding to the isotropic superfluid phase and the LOFF phase and a local maximum corresponding to the gapless phase are manifest. Our results clearly illustrate the path from the the unstable gapless phase down to the LOFF phase.Comment: 10 pages, 8 figure

    Zoology of a non-local cross-diffusion model for two species

    Full text link
    We study a non-local two species cross-interaction model with cross-diffusion. We propose a positivity preserving finite volume scheme based on the numerical method introduced in Ref. [15] and explore this new model numerically in terms of its long-time behaviours. Using the so gained insights, we compute analytical stationary states and travelling pulse solutions for a particular model in the case of attractive-attractive/attractive-repulsive cross-interactions. We show that, as the strength of the cross-diffusivity decreases, there is a transition from adjacent solutions to completely segregated densities, and we compute the threshold analytically for attractive-repulsive cross-interactions. Other bifurcating stationary states with various coexistence components of the support are analysed in the attractive-attractive case. We find a strong agreement between the numerically and the analytically computed steady states in these particular cases, whose main qualitative features are also present for more general potentials

    Nonlinear effects for island coarsening and stabilization during strained film heteroepitaxy

    Full text link
    Nonlinear evolution of three-dimensional strained islands or quantum dots in heteroepitaxial thin films is studied via a continuum elasticity model and the development of a nonlinear dynamic equation governing the film morphological profile. All three regimes of island array evolution are identified and examined, including a film instability regime at early stage, a nonlinear coarsening regime at intermediate times, and the crossover to a saturated asymptotic state, with detailed behavior depending on film-substrate misfit strains but not qualitatively on finite system sizes. The phenomenon of island stabilization and saturation, which corresponds to the formation of steady but non-ordered arrays of strained quantum dots, occurs at later time for smaller misfit strain. It is found to be controlled by the strength of film-substrate wetting interaction which would constrain the valley-to-peak mass transport and hence the growth of island height, and also determined by the effect of elastic interaction between surface islands and the high-order strain energy of individual islands at late evolution stage. The results are compared to previous experimental and theoretical studies on quantum dots coarsening and saturation.Comment: 19 pages, 12 figures; submitted to Phys. Rev.

    Transition Temperature of a Uniform Imperfect Bose Gas

    Full text link
    We calculate the transition temperature of a uniform dilute Bose gas with repulsive interactions, using a known virial expansion of the equation of state. We find that the transition temperature is higher than that of an ideal gas, with a fractional increase K_0(na^3)^{1/6}, where n is the density and a is the S-wave scattering length, and K_0 is a constant given in the paper. This disagrees with all existing results, analytical or numerical. It agrees exactly in magnitude with a result due to Toyoda, but has the opposite sign.Comment: Email correspondence to [email protected] ; 2 pages using REVTe

    New filter technique improves home television reception

    Get PDF
    Program studies and designs combline filters and analyzes their effectiveness in improving TV quality. Signal tracking methods are improved. Combline phase-lock loop provides significant sensitivity improvement above and below threshold

    Decay Modes of the Hoyle State in 12C^{12}C

    Full text link
    Recent experimental results give an upper limit less than 0.043\% (95\% C.L.) to the direct decay of the Hoyle state into 3α\alpha respect to the sequential decay into 8^8{Be}+α\alpha. We performed one and two-dimensional tunneling calculations to estimate such a ratio and found it to be more than one order of magnitude smaller than experiment depending on the range of the nuclear force. This is within high statistics experimental capabilities. Our results can also be tested by measuring the decay modes of high excitation energy states of 12^{12}C where the ratio of direct to sequential decay might reach 10\% at E∗E^*(12^{12}C)=10.3 MeV. The link between a Bose Einstein Condensate (BEC) and the direct decay of the Hoyle state is also addressed. We discuss a hypothetical `Efimov state' at E∗E^*(12^{12}C)=7.458 MeV, which would mainly {\it sequentially} decay with 3α\alpha of {\it equal energies}: a counterintuitive result of tunneling. Such a state, if it would exist, is at least 8 orders of magnitude less probable than the Hoyle's, thus below the sensitivity of recent and past experiments.Comment: 6 pages, 2 figures, accepted by Phys. Lett.

    On-demand generation of entanglement of atomic qubits via optical interferometry

    Full text link
    The problem of on-demand generation of entanglement between single-atom qubits via a common photonic channel is examined within the framework of optical interferometry. As expected, for a Mach-Zehnder interferometer with coherent laser beam as input, a high-finesse optical cavity is required to overcome sensitivity to spontaneous emission. We show, however, that with a twin-Fock input, useful entanglement can in principle be created without cavity-enhancement. Both approaches require single-photon resolving detectors, and best results would be obtained by combining both cavity-feedback and twin-Fock inputs. Such an approach may allow a fidelity of .99.99 using a two-photon input and currently available mirror and detector technology. In addition, we study interferometers based on NOON states and show that they perform similarly to the twin-Fock states, yet without the need for high-precision photo-detectors. The present interferometrical approach can serve as a universal, scalable circuit element for quantum information processing, from which fast quantum gates, deterministic teleportation, entanglement swapping etc.etc., can be realized with the aid of single-qubit operations.Comment: To be published in PR

    The tensor structure on the representation category of the Wp\mathcal{W}_p triplet algebra

    Full text link
    We study the braided monoidal structure that the fusion product induces on the abelian category Wp\mathcal{W}_p-mod, the category of representations of the triplet WW-algebra Wp\mathcal{W}_p. The Wp\mathcal{W}_p-algebras are a family of vertex operator algebras that form the simplest known examples of symmetry algebras of logarithmic conformal field theories. We formalise the methods for computing fusion products, developed by Nahm, Gaberdiel and Kausch, that are widely used in the physics literature and illustrate a systematic approach to calculating fusion products in non-semi-simple representation categories. We apply these methods to the braided monoidal structure of Wp\mathcal{W}_p-mod, previously constructed by Huang, Lepowsky and Zhang, to prove that this braided monoidal structure is rigid. The rigidity of Wp\mathcal{W}_p-mod allows us to prove explicit formulae for the fusion product on the set of all simple and all projective Wp\mathcal{W}_p-modules, which were first conjectured by Fuchs, Hwang, Semikhatov and Tipunin; and Gaberdiel and Runkel.Comment: 58 pages; edit: added references and revisions according to referee reports. Version to appear on J. Phys.
    • …
    corecore