352 research outputs found

    Super-harmonic injection locking of nano-contact spin-torque vortex oscillators

    Full text link
    Super-harmonic injection locking of single nano-contact (NC) spin-torque vortex oscillators (STVOs) subject to a small microwave current has been explored. Frequency locking was observed up to the fourth harmonic of the STVO fundamental frequency f0f_{0} in microwave magneto-electronic measurements. The large frequency tunability of the STVO with respect to f0f_{0} allowed the device to be locked to multiple sub-harmonics of the microwave frequency fRFf_{RF}, or to the same sub-harmonic over a wide range of fRFf_{RF} by tuning the DC current. In general, analysis of the locking range, linewidth, and amplitude showed that the locking efficiency decreased as the harmonic number increased, as expected for harmonic synchronization of a non-linear oscillator. Time-resolved scanning Kerr microscopy (TRSKM) revealed significant differences in the spatial character of the magnetization dynamics of states locked to the fundamental and harmonic frequencies, suggesting significant differences in the core trajectories within the same device. Super-harmonic injection locking of a NC-STVO may open up possibilities for devices such as nanoscale frequency dividers, while differences in the core trajectory may allow mutual synchronisation to be achieved in multi-oscillator networks by tuning the spatial character of the dynamics within shared magnetic layers.Comment: 21 pages, 8 figure

    Dynamic Spin-Polarized Resonant Tunneling in Magnetic Tunnel Junctions

    Full text link
    Precisely engineered tunnel junctions exhibit a long sought effect that occurs when the energy of the electron is comparable to the potential energy of the tunneling barrier. The resistance of metal-insulator-metal tunnel junctions oscillates with an applied voltage when electrons that tunnel directly into the barrier's conduction band interfere upon reflection at the classical turning points: the insulator-metal interface, and the dynamic point where the incident electron energy equals the potential barrier inside the insulator. A model of tunneling between free electron bands using the exact solution of the Schroedinger equation for a trapezoidal tunnel barrier qualitatively agrees with experiment.Comment: 4pgs, 3 fig

    Direct observation of magnetization dynamics generated by nano-contact spin-torque vortex oscillators

    Full text link
    Time-resolved scanning Kerr microscopy has been used to directly image the magnetization dynamics of nano-contact (NC) spin-torque vortex oscillators (STVOs) when phase-locked to an injected microwave (RF) current. The Kerr images reveal free layer magnetization dynamics that extend outside the NC footprint, where they cannot be detected electrically, but which are crucial to phase-lock STVOs that share common magnetic layers. For a single NC, dynamics were observed not only when the STVO frequency was fully locked to that of the RF current, but also for a partially locked state characterized by periodic changes in the core trajectory at the RF frequency. For a pair of NCs, images reveal the spatial character of dynamics that electrical measurements show to have enhanced amplitude and reduced linewidth. Insight gained from these images may improve understanding of the conditions required for mutual phase-locking of multiple STVOs, and hence enhanced microwave power emission.Comment: 10 pages, 3 figure

    Merging droplets in double nano-contact spin torque oscillators

    Get PDF
    We demonstrate how magnetic droplet soliton pairs, nucleated by two separated nano-contact (NC) spin torque oscillators, can merge into a single droplet soliton. A detailed description of the magnetization dynamics of this merger process is obtained by micromagnetic simulations: A droplet pair with a steady-state in-phase spin precession is generated through the spin-transfer torque effect underneath two separate NCs, followed by a gradual expansion of the droplets volume and the out phase of magnetization on the inner side of the two droplets, resulting in the droplets merging into a larger droplet. This merger occurs only when the NC separation is smaller than a critical value. A transient breathing mode is observed before the merged droplet stabilizes into a steady precession state. The precession frequency of the merged droplet is lower than that of the droplet pair, consistent with its larger size. Merged droplets can again break up into droplet pairs at high enough magnetic field with a strong hysteretic response.Comment: accepted by Physical Review
    • …
    corecore