3 research outputs found

    Integral Backstepping Control for Maximum Power Point Tracking and Unity Power Factor of a Three Phase Grid Connected Photovoltaic System

    Get PDF
    This paper presents a robust control strategy for a grid connected photovoltaic system with a boost converter by using an integral Backstepping method based on a nonlinear state model, which guarantees the Lyapunov stability of the global system. The system has tracked precisely the maximum power point, with a very fast response and the unit power factor has been observed under different atmospheric conditions. Moreover, the best advantage of the controller is that it’s a good corrector of the grid perturbation and system parameter disturbance. The simulation result has demonstrated the performance of this strategy

    Backstepping based power control of a three-phase Single-stage Grid-connected PV system

    Get PDF
    In order to reduce costs while maintaining superior performance, this paper presents a new control methodology of a three-phase grid connected photovoltaic system without using the intermediary DC/DC converter. Based on the synchronized nonlinear model of the whole photovoltaic system, two controllers have been proposed for the three-phase inverter in order to ensure the operation of the PV system at the maximum power point with unity power factor and minimum grid disturbance. Grid synchronization has been ensured by a three-phase 2nd order PLL (Phase-Locked Loop). The stability of each controller is demonstrated by means of Lyapunov analysis and evaluated under changing atmospheric conditions using the Matlab/Simulink environment, the simulation results clearly demonstrate the performance provided by each controller

    Efficient Control of a Three Phase Grid Connected PV System

    No full text
    This paper presents a new control strategy of a photovoltaic system, which consists of a photovoltaic generator PVG coupled to a three phase load and three phase grid by a three phase voltage source inverter VSI without DC-DC converter. The controller is designed by using Backstepping method based on d-q transformation of a new model of the global system. The main goals of this control strategy are to achieve the maximum power point MPPT with very good precision and the unity power factor in level of the grid power flow. Mathematical analysis demonstrate the asymptotic stability of the controlled system and simulation results proved that the controller has achieved all the objectives with high dynamic performance in presence of atmospheric condition changes. Moreover, the proposed controller shows a very good robustness under system disturbance, which presents the most important advantage of this controller compared to the other control strategies. Furthermore, this controller can operate with a high efficiency with any kind of the load
    corecore