32 research outputs found
Loliolide – the most ubiquitous lactone
It is extremely interesting that this lactone also affects the behavior of ants as well as the development of certain plants (allelopathic activity). However, sometimes there are side effects as in the case of structural analogues of loliolide contributing to extinction of tropical coral.Niezmiernie interesujący jest fakt, że lakton ten wywiera również wpływ na zachowanie mrówek jak i na rozwój niektórych roślin (aktywność alleplopatyczna). Czasami jednak można zaobserwować również działania niepożądane jak w przypadku analogów strukturalnych loliolidu mających swój udział w wymieraniu raf tropikalnych
Plant-Mediated Enantioselective Transformation of Indan-1-one and Indan-1-ol. Part 2
The main purpose of this publication was to obtain the S-enantiomer of indan-1-ol with high enantiomeric excess and satisfactory yield. In our research, we used carrot callus cultures (Daucus carota L.), whereby the enzymatic system reduced indan-1-one and oxidized indan-1-ol. During the reaction of reduction, after five days, we received over 50% conversion, with the enantiomeric excess of the formed S-alcohol above 99%. In turn, during the oxidation of racemic indan-1-ol after 15 days, 36.7% of alcohol with an enantiomeric excess 57.4% S(+) remained in the reaction mixture. In addition, our research confirmed that the reactions of reduction and oxidation are competing reactions during the transformation of indan-1-ol and indan-1-one in carrot callus cultures
Can Antioxidants Reduce the Toxicity of Bisphenol?
BPA is still the subject of extensive research due to its widespread use, despite its significant toxicity resulting not only from its negative impact on the endocrine system but also from disrupting the organism’s oxidative homeostasis. At the molecular level, bisphenol A (BPA) causes an increased production of ROS and hence a change in the redox balance, mitochondrial dysfunction, and modulation of cell signaling pathways. Importantly, these changes accumulate in animals and humans, and BPA toxicity may be aggravated by poor diet, metabolic disorders, and coexisting diseases. Accordingly, approaches using antioxidants to counteract the negative effects of BPA are being considered. The preliminary results that are described in this paper are promising, however, it should be emphasized that further studies are required to determine the optimal dosage and treatment regimen to counteract BPA toxicity. It also seems necessary to have a more holistic approach showing, on the one hand, the influence of BPA on the overall human metabolism and, on the other hand, the influence of antioxidants in doses that are acceptable with the diet on BPA toxicity. This is due in part to the fact that in many cases, the positive effect of antioxidants in in vitro studies is not confirmed by clinical studies. For this reason, further research into the molecular mechanisms of BPA activity is also recommended
Biotechnological Methods of Sulfoxidation: Yesterday, Today, Tomorrow
The production of chiral sulphoxides is an important part of the chemical industry since they have been used not only as pharmaceuticals and pesticides, but also as catalysts or functional materials. The main purpose of this review is to present biotechnological methods for the oxidation of sulfides. The work consists of two parts. In the first part, examples of biosyntransformation of prochiral sulfides using whole cells of bacteria and fungi are discussed. They have more historical significance due to the low predictability of positive results in relation to the workload. In the second part, the main enzymes responsible for sulfoxidation have been characterized such as chloroperoxidase, dioxygenases, cytochrome flavin-dependent monooxygenases, and P450 monooxygenases. Particular emphasis has been placed on the huge variety of cytochrome P450 monooxygenases, and flavin-dependent monooxygenases, which allows for pure sulfoxides enantiomers effectively to be obtained. In the summary, further directions of research on the optimization of enzymatic sulfoxidation are indicated
One Hundred Faces of Geraniol
Geraniol is a monoterpenic alcohol with a pleasant rose-like aroma, known as an important ingredient in many essential oils, and is used commercially as a fragrance compound in cosmetic and household products. However, geraniol has a number of biological activities, such as antioxidant and anti-inflammatory properties. In addition, numerous in vitro and in vivo studies have shown the activity of geraniol against prostate, bowel, liver, kidney and skin cancer. It can induce apoptosis and increase the expression of proapoptotic proteins. The synergy of this with other drugs may further increase the range of chemotherapeutic agents. The antibacterial activity of this compound was also observed on respiratory pathogens, skin and food-derived strains. This review discusses some of the most important uses of geraniol
Plant-Mediated Enantioselective Transformation of Indan-1-One and Indan-1-ol
The main purpose of this work was to discover the way to obtain pure enantiomers of indan-1-ol. The subject of the study was the ability of the plant enzyme system to reduce the carbonyl group of indan-1-one, as well as to oxidize the hydroxyl group of racemic indan-1-ol. Locally available fruit and vegetables were selected for stereoselective biotransformation. During the reduction, mainly alcohol of the S-(+)-configuration with a high enantiomeric excess (ee = 99%) was obtained. The opposite enantiomer was obtained in bioreduction with the apple and parsley. Racemic indan-1-ol was oxidized by all catalysts. The best result was obtained for the Jerusalem artichoke: Over 50% conversion was observed after 1 h, and the enantiomeric excess of unreacted R-(–)-indan1-ol was 100%
Yeast-Mediated Stereoselective Reduction of α-Acetylbutyrolactone
α’-1’-Hydroxyethyl-γ-butyrolactone—a product of reduction of α-acetylbutyrolactone possesses two stereogenic centres and two reactive functionalities (an alcohol and an ester group). Additionally, this compound has a similar structure to γ-butyrolactone (GBL) which is psychoactive. In the present work, biotransformation using seven yeast strains was used to obtain anti stereoisomers of α’-1’-hydroxyethyl-γ-butyrolactone. The process was carried out in both growing and resting culture. The effect of media composition and organic solvent addition on stereoselectivity and effectiveness of biotransformation was also studied. After one day of transformation, optically pure (3R,1’R)-hydroxylactone was obtained by means of Yarrowia lipolytica P26A in YPG medium (yeast extract (1%), peptone (2%) and glucose (2%)). In turn, the use of resting cells culture of Candida viswanathi AM120 in the presence of 10% DES (deep eutectic solvent) allowed us to obtain a (3S,1’S)-enantiomer with de = 85% (diastereomeric excess) and ee 76% (enantiomeric excess)
Biotransformation of α-Acetylbutyrolactone in Rhodotorula Strains
Due to its structural similarity, the α’-1′-hydroxyethyl-γ-butyrolactone obtained by reduction of (±)-α-acetyl-γ-butyrolactone may have a similar function in the body to γ-butyrolactone (GBL). In the work presented, biotransformation of α-acetyl-γ-butyrolactone by three Rhodotorula strains was performed obtaining enantiomerically enriched alcohol. The process was carried out in growing and resting cultures. We studied how both media composition and organic solvent volume affected stereoselectivity and effectiveness of biotransformation. After 2 h, the enantiomerically pure (3R, 1′S)-α’-1′-hydroxyethyl-γ-butyrolactone was obtained using the R. marina AM77 strain in YPG (Yeast extract-Peptone-Glucose) medium enriched with 5% glycerol. To our best knowledge there is no previous information in the literature about the (±)-α-acetyl-γ-butyrolactone biotransformation performed in medium with addition of organic and deep eutectic solvents
Mushrooms of the Genus Ganoderma Used to Treat Diabetes and Insulin Resistance
Pharmacotherapy using natural substances can be currently regarded as a very promising future alternative to conventional therapy of diabetes mellitus, especially in the case of chronic disease when the body is no longer able to produce adequate insulin or when it cannot use the produced insulin effectively. This minireview summarizes the perspectives, recent advances, and major challenges of medicinal mushrooms from Ganoderma genus with reference to their antidiabetic activity. The most active ingredients of those mushrooms are polysaccharides and triterpenoids. We hope this review can offer some theoretical basis and inspiration for the mechanism study of the bioactivity of those compounds
Transformations of Monoterpenes with the p-Menthane Skeleton in the Enzymatic System of Bacteria, Fungi and Insects
The main objective of this article was to present the possibilities of using the enzymatic system of microorganisms and insects to transform small molecules, such as monoterpenes. The most important advantage of this type of reaction is the possibility of obtaining derivatives that are not possible to obtain with standard methods of organic synthesis or are very expensive to obtain. The interest of industrial centers focuses mainly on obtaining particles of high optical purity, which have the desired biological properties. The cost of obtaining such a compound and the elimination of toxic or undesirable chemical waste is important. Enzymatic reactions based on enzymes alone or whole microorganisms enable obtaining products with a specific structure and purity in accordance with the rules of Green Chemistry