70 research outputs found
A magnetically actuated dynamic labyrinthine transmissive ultrasonic metamaterial
Currently, space-coiling acoustic metamaterials are static, requiring manual reconfiguration for sound-field modulation. Here, we introduce an approach to enable active reconfiguration, using standalone dynamic space-coiling unit cells called dynamic meta-bricks. Unlike their static counterparts, these meta-bricks, house an actuatable soft robotic-inspired magnetorheological elastomeric flap. This flap operates like a switch to directly control the transmitted ultrasound. For scalability, we present a hybrid stacking method, which vertically combines static and dynamic meta-bricks. This allows us to form a surface-integrated metasurface through concatenating variations of either fully static or hybrid stacks. By actuating dynamic metasurface sections, we experimentally demonstrate accurate modulation of λ/4 (â2 mm) between two acoustic twin traps. We shift a levitated bead between the traps, validating that full-array operational dynamicity is achievable with partial, localised actuation. This work showcases the synergy between active and passive reconfigurability, opening possibilities to develop multifunctional metamaterials with additional degrees of freedom in design and control
Geometry-based tunability enhancement of flexible thin-film varactors
In this letter, flexible voltage-controlled capacitors (varactors) based on an amorphous IndiumâGalliumâZincâOxide (a-IGZO) semiconductor are presented. Two different varactor designs and their influence on the capacitance tuning characteristics are investigated. The first design consists of a top electrode finger structure which yields a maximum capacitance tunability of 6.9 at 10 kHz. Second, a novel interdigitated varactor structure results in a maximum tunability of 93.7 at 100 kHz. The design- and frequency-dependencies of the devices are evaluated through CâV measurements. Furthermore, we show bending stability of the devices down to a tensile radius of 6 mm without altering the performance. Finally, a varactor is combined with a thin-film resistor to demonstrate a tunable RC-circuit for impedance matching and low-pass filtering applications. The device fabrication flow and material stack are compatible with standard flexible thin-film transistor fabrication which enables parallel implementation of analog or logic circuitry and varactor devices
Improvement of contact resistance in flexible a-IGZO thin-film transistors by CF4/O2 plasma treatment
In this work, we analyze the effect of CF4/O2 plasma treatment on the contact interface between the amorphous Indium-Gallium-Zinc-Oxide (a-IGZO) semiconductor and Titanium-Gold electrodes. First, the influence of CF4/O2 plasma treatment is evaluated using transmission line structures and compared to pure O2 and CF4 plasma, resulting in a reduction of the contact resistance RC by a factor of 24.2 compared to untreated interfaces. Subsequently, the CF4/O2 plasma treatment is integrated in the a-IGZO thin-film transistor (TFT) fabrication process flow. We achieve a reduction of the gate bias dependent RC by a factor up to 13.4, which results in an increased current drive capability. Combined with an associated channel length reduction, the effective linear field-effect mobility is increased by up to 74.6% for the CF4/O2 plasma treated TFTs compared to untreated reference devices
Recommended from our members
Flexible temperature sensor integration into e-textiles using different industrial yarn fabrication processes
Textiles enhanced with thin-film flexible sensors are well-suited for unobtrusive monitoring of skin parameters due to the sensorsâ high conformability. These sensors can be damaged if they are attached to the surface of the textile, also affecting the textilesâ aesthetics and feel. We investigate the effect of embedding flexible temperature sensors within textile yarns, which adds a layer of protection to the sensor. Industrial yarn manufacturing techniques including knit braiding, braiding, and double covering were utilised to identify an appropriate incorporation technique. The thermal time constants recorded by all three sensing yarns was <10 s. Simultaneously, effective sensitivity only decreased by a maximum of 14% compared to the uncovered sensor. This is due to the sensor being positioned within the yarn instead of being in direct contact with the measured surface. These sensor yarns were not affected by bending and produced repeatable measurements. The double covering method was observed to have the least impact on the sensorsâ performance due to the yarnâs smaller dimensions. Finally, a sensing yarn was incorporated in an armband and used to measure changes in skin temperature. The demonstrated textile integration techniques for flexible sensors using industrial yarn manufacturing processes enable large-scale smart textile fabrication
Radio frequency electronics on plastic
In this paper the recent progress of active high frequency electronics on plastic is discussed. This technology is mechanically flexible, bendable, stretchable and does not need any rigid chips. Indium Gallium Zinc Oxide (IGZO) technology is applied. At 2 V supply and gate length of 0.5 ÎŒm, the thin-film transistors (TFTs) yield a measured transit frequency of 138 MHz. Our scalable TFT compact simulation model shows good agreement with measurements. To achieve a sufficiently high yield, TFTs with gate lengths of around 5 ÎŒm are used for the circuit design. A Cherry Hopper amplifier with 3.5 MHz bandwidth, 10 dB gain and 5 mW dc power is presented. The fully integrated receiver covering a plastic foil area of 3 Ă 9 mm2 includes a four stage cascode amplifier, an amplitude detector, a baseband amplifier and a filter. At a dc current of 7.2 mA and a supply of 5 V, a bandwidth of 2 - 20 MHz and a gain beyond 15 dB were measured. Finally, an outlook regarding future advancements of high frequency electronics on plastic is given
Flexible sensorsâfrom materials to applications
Flexible sensors have the potential to be seamlessly applied to soft and irregularly shaped surfaces such as the human skin or textile fabrics. This benefits conformability dependant applications including smart tattoos, artificial skins and soft robotics. Consequently, materials and structures for innovative flexible sensors, as well as their integration into systems, continue to be in the spotlight of research. This review outlines the current state of flexible sensor technologies and the impact of material developments on this field. Special attention is given to strain, temperature, chemical, light and electropotential sensors, as well as their respective applications
Recommended from our members
Biocompatible gel-free coconut-oil and carbon black electrodes for ECG and respiration measurements
The current state of the art in telemedicine has increased the interest in long term monitoring of physiological and bioelectric signals. This motivated the development of materials and techniques for the fabrication of biocompatible, user and environmentally friendly alternatives to conventional resistive wet electrodes. Here we report a method for the fabrication of dry flexible and stretchable electrodes based on Coconut-Oil and Carbon Black for the monitoring of electrophysiological signals without conductive gels. The highly stretchable material shows a specific resistance Ï down to 33.2±12.3Ωm, high conformability, and a stretchability up to 1500%. The epidermal electrodes were used to record Electrocardiographic (ECG) signals and measure respiration in a 3-lead configuration and compared to commercial wet electrodes. Even after being elongated by 100% for 100 stretch/release cycles, a reliable recording of the QRS-complex is demonstrated without the need for any contact enhancer or substances that cause skin reaction, demonstrating the potential use of this material for long term ECG monitoring applications
- âŠ